
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-11-16

1 Arnoldi

Krylov subspaces are good spaces for approximation schemes. But the power
basis (i.e. the basis Ajb for j = 0, . . . , k − 1) is not good for numerical
work. The vectors in the power basis tend to converge toward the dominant
eigenvector, and so the power basis quickly becomes ill-conditioned. We
would much rather have orthonormal bases for the same spaces. This is
where the Arnoldi iteration and its kin come in.

Each step of the Arnoldi iteration consists of two pieces:

• Compute Aqk to get a vector in the space of dimension k + 1

• Orthogonalize Aqk against q1, . . . , qk using Gram-Schmidt. Scale the
remainder to unit length.

If we keep track of the coefficients in the Gram-Schmidt process in a matrix
H, we have

hk+1,kqk+1 = Aqk −
k∑

j=1

qjhjk

where hjk = qTj Aqk and hk+1,k is the normalization constant. Rearranging
slightly, we have

Aqk =
k+1∑
j=1

qjhjk.

Defining Qk =
[
q1 q2 . . . qk

]
, we have the Arnoldi decomposition

AQk = Qk+1H̄k, H̄k =


h11 h12 . . . h1k
h21 h22 . . . h2k

h32 . . . h3k
. . .

...
hk+1,k

 ∈ R(k+1)×k.

The Arnoldi decomposition is simply the leading k columns of an upper
Hessenberg reduction of the original matrix A. The Arnoldi algorithm is the

Bindel, Fall 2016 Matrix Computations (CS 6210)

1 % [Q,H] = arnoldi(A,b)
2 %
3 % Compute an Arnoldi decomposition
4 %
5 % A*Q(:,1:end-1) = Q*H
6 %
7 % where H is a k+1-by-k upper Hessenberg matrix and Q has
8 % orthonormal columns.
9 %

10 function [Q,H] = arnoldi(A,b,k)
11

12 n = length(A);
13 Q = zeros(n,k+1); % Orthonormal basis
14 H = zeros(k+1,k); % Upper Hessenberg matrix
15

16 Q(:,1) = b/norm(b);
17 for j = 1:k
18

19 % Get a vector in the next subspace (and its norm)
20 Q(:,j+1) = A*Q(:,j);
21 norma = norm(Q(:,j+1));
22

23 % Modified Gram-Schmidt (standard Arnoldi)
24 for l = 1:j
25 H(l,j) = Q(:,l)’*Q(:,j+1);
26 Q(:,j+1) = Q(:,j+1)-Q(:,l)*H(l,j);
27 end
28 H(j+1,j) = norm(Q(:,j+1));
29

30 % Normalize final result
31 Q(:,j+1) = Q(:,j+1)/H(j+1,j);
32

33 end
34

35 end

Figure 1: The standard Arnoldi algorithm.

Bindel, Fall 2016 Matrix Computations (CS 6210)

1 % [Q,H] = arnoldi2(A,b)
2 %
3 % Compute an Arnoldi decomposition
4 %
5 % A*Q(:,1:end-1) = Q*H
6 %
7 % where H is a k+1-by-k upper Hessenberg matrix and Q has
8 % orthonormal columns. We use MGS, and make a second
9 % re-orthogonalization pass if there is enough cancellation

10 % in the first pass.
11 %
12 function [Q,H] = arnoldi2(A,b,k)
13

14 n = length(A);
15 Q = zeros(n,k+1); % Orthonormal basis
16 H = zeros(k+1,k); % Upper Hessenberg matrix
17 alpha = 0.1; % The "twice is enough" threshold
18

19 Q(:,1) = b/norm(b);
20 for j = 1:k
21

22 % Get a vector in the next subspace (and its norm)
23 Q(:,j+1) = A*Q(:,j);
24 norma = norm(Q(:,j+1));
25

26 % Modified Gram-Schmidt (standard Arnoldi)
27 for l = 1:j
28 H(l,j) = Q(:,l)’*Q(:,j+1);
29 Q(:,j+1) = Q(:,j+1)-Q(:,l)*H(l,j);
30 end
31 H(j+1,j) = norm(Q(:,j+1));
32

33 % The "twice is enough" second pass, if the residual is small
34 if H(j+1,j) < alpha*norma
35 for l = 1:j
36 mu = Q(:,l)’*Q(:,j+1);
37 Q(:,j+1) = Q(:,j+1)-Q(:,l)*mu;
38 H(j,l) = H(j,l) + mu;
39 end
40 H(j+1,j) = norm(Q(:,j+1));
41 end
42

43 % Normalize final result
44 Q(:,j+1) = Q(:,j+1)/H(j+1,j);
45

46 end
47

48 end

Figure 2: The Arnoldi algorithm with re-orthogonalization.

Bindel, Fall 2016 Matrix Computations (CS 6210)

interlaced multiply-and-orthogonalize process used to obtain the decompo-
sition (Figure 1). Unfortunately, the modified Gram-Schmidt algorithm —
though more stable than classical Gram-Schmidt! — is nonetheless unstable
in general. The sore point occurs when we start with a matrix that lies too
near the span of the vectors we orthogonalize against; in this case, by the time
we finish orthogonalizing against previous vectors, we have cancelled away so
much of the original vector that what is left may be substantially contami-
nated by roundoff. For this reason, the “twice is enough” reorthogonalization
process of Kahan and Parlett is useful: this says that if the remainder af-
ter orthogonalization is too small compared to what we started with, then
we should perhaps refine our computation by orthogonalizing the remainder
again. We show this process in Figure 2.

2 Lanczos

Now suppose that A is a symmetric matrix. In this case, the Arnoldi de-
composition takes a special form: the upper Hessenberg matrix is now a
symmetric upper Hessenber matrix (aka a tridiagonal), and we dub the re-
sulting decomposition the Lanczos decomposition:

AQk = Qk+1T̄k, Tk =



α1 β1
β1 α2 β2

β2 α3 β3
.

βk−2 αk−1 βk−1

βk−1 αk

βk


The Lanczos algorithm is the specialization of the Arnoldi algorithm to the
symmetric case. In exact arithmetic, the tridiagonal form of the coefficient
matrix allows us to do only a constant amount of orthogonalization work at
each step (Figure 3).

Sadly, the Lanczos algorithm in floating point behaves rather differently
from the algorithm in exact arithmetic. In particular, the iteration tends to
“restart” periodically as the space starts to get very good approximations
of eigenvectors. One can deal with this via full reorthogonalization, as with
the Arnoldi iteration; but then the method loses the luster of low cost, as

Bindel, Fall 2016 Matrix Computations (CS 6210)

1 % [Q,alpha,beta] = lanczos(A,b)
2 %
3 % Compute an Lanczos decomposition
4 %
5 % A*Q(:,1:end-1) = Q*T
6 %
7 % where T is a k+1-by-k tridiagonal matrix with diagonal
8 % entries alpha and super/subdiagonals beta, and Q has
9 % orthonormal columns.

10 %
11 function [Q,H] = lanczos(A,b,k)
12

13 n = length(A);
14 Q = zeros(n,k+1); % Orthonormal basis
15 alpha = zeros(k,1);
16 beta = zeros(k,1);
17

18 Q(:,1) = b/norm(b);
19 for j = 1:k
20 Q(:,j+1) = A*Q(:,j);
21 alpha(j) = Q(:,j)’*Q(:,j+1);
22 Q(:,j+1) = Q(:,j+1)-alpha(j)*Q(:,j);
23 if j > 1
24 Q(:,j+1) = Q(:,j+1)-beta(j-1)*Q(:,j-1);
25 end
26 beta(j) = norm(Q(:,j+1));
27 Q(:,j+1) = Q(:,j+1)/beta(j);
28 end
29

30 end

Figure 3: Lanczos iteration. Note that in floating point, the columns of Q
will lose orthogonality.

Bindel, Fall 2016 Matrix Computations (CS 6210)

we have to orthogonalize against several vetors periodically. An alternate
selective orthogonalization strategy proposed by Parlett and Scott lets us
orthogonalize only against a few previous vectors, which are associated with
converged eigenvector approximations (Ritz vectors). But, as we shall see,
such orthogonalization is mostly useful when we want to solve eigenvalue
problems. For linear systems, it tends not to be necessary.

	Arnoldi
	Lanczos

