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1 Quasi-optimality

We quantify the stability of a subspace approximation method via a quasi-
optimality bound:

‖x∗ − x̂‖ ≤ C min
v∈V
‖x∗ − v‖.

That is, the approximation x̂ is quasi-optimal if it has error within some
factor C of the best error possible within the space.

To derive quasi-optimality results, it is useful to think of all of our meth-
ods as defining a solution projector that maps x∗ to the approximate solution
to Ax̂ = Ax∗ = b. From the (Petrov-)Galerkin perspective, if W ∈ Rn×k and
V ∈ Rn×k are bases for the trial space W and V , respectively, then we have

W TAV ŷ = W T b, x̂ = V ŷ

x̂ = V (W TAV )−1W T b

= V (W TAV )−1W TAx∗.

= Πx∗.

The error projector I−Π maps x∗ to the error x̂−x∗ in approximately solving
Ax̂ ≈ Ax∗ = b. There is no error iff x∗ is actually in V ; that is, V is the null
space of I − Π. Hence, if x̃ is any vector in V , then

ê = (I − Π)x = (I − Π)(x− x̃) = (I − Π)ẽ.

Therefore we have

‖x− x̂‖ ≤ ‖I − Π‖min
x̃∈V
‖x− x̃‖,

and a bound on ‖I − Π‖ gives a quasi-optimality result.
For any operator norm, we have

|I − Π‖ ≤ 1 + ‖Π‖ ≤ 1 + ‖V ‖‖(W TAV )−1‖‖W TA‖;

and in any Euclidean norm, if V and W are chosen to have orthonormal
columns, then

‖I − Π‖ ≤ 1 + ‖(W TAV )−1‖‖A‖.
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If A is symmetric and positive definite and V = W , then the interlace
theorem gives ‖(V TAV )−1‖ ≤ ‖A−1‖, and the quasi-optimality constant is
bounded by 1 + κ(A). In more general settings, though, we may have no
guarantee that the projected matrix W TAV is far from singular, even if A
itself is nonsingular. To guarantee boundedness of (W TAV )−1 a priori re-
quires a compatibility condition relating W , V , and A; such a condition is
sometimes called the LBB condition (for Ladyzhenskaya-Babuška-Brezzi) or
the inf-sup condition, so named because (as we have discussed previously)

σmin(W TAV ) = inf
w∈W

sup
v∈V

wTAv

‖w‖‖v‖
.

The LBB condition plays an important role when Galerkin methods are used
to solve large-scale PDE problems, since there it is easy to choose the spaces
V and W in a way that leads to very bad conditioning. But for iterative
solvers of the type we discuss in this course (Krylov subspace solvers), such
pathologies are a more rare occurrence. In this setting, we may prefer to
monitor ‖(W TAV )−1‖ directly as we go along, and to simply increase the
dimension of the space if we ever run into trouble.

2 Model reduction

Our focus in this section is methods for solving a single linear system at
a time. Often, we want to solve many closely-related linear systems with
different matrices. As a simple example, we might want to evaluate

(A− σI)x(σ) = b

for several different values of σ within some range; more generally, we might
want to solve linear systems A(s)x(s) = b(s) where A and b depend smoothly
on some low-dimensional parameter vector s that varies over a bounded set.
In such settings, one often finds (and can sometimes prove via interpola-
tion theory) that x(s) lies close to a space V that can be computed. For
example, we might find that an adequate space V spanned by sample solu-
tions x(s1), x(s2), . . .; we could then choose a corresponding trial spaceW as
the basis for a Galerkin scheme. Hence, we may estimate x(σ) very quickly
(online) after a more expensive computation to construct a basis for an ap-
propriate approximation space (offline).
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There are a wide-variety of techniques that employ this general idea.
These include model reduction methods from control theory (moment-matching
methods that use Krylov subspaces, truncated balanced realization methods
that involve solving Sylvester equations, etc); global-basis methods for the
solution of PDEs (e.g. the so-called empirical interpolation method); and
many other methods for both linear and nonlinear problems. While it is not
a focus for this course, the approach is so simple and broadly applicable that
I would feel bad if you left not knowing about it.

3 Krylov subspaces

The Krylov subspace of dimension k generated by A ∈ Rn×n and b ∈ Rn is

Kk(A, b) = span{b, Ab, . . . , Ak−1b} = {p(A)b : p ∈ Pk−1}.

Krylov subspaces are a natural choice for subspace-based methods for ap-
proximate linear solves, for two reasons:

• If all you are allowed to do with A is compute matrix-vector products,
and the only vector at hand is b, what else would you do?

• The Krylov subspaces have excellent approximation properties.

Krylov subspaces have several properties that are worthy of comment.
Because the vectors Ajb are proportional to the vectors obtained in power
iteration, one might reasonably (and correctly) assume that the space quickly
contains good approximations to the eigenvectors associated with the largest
magnitude eigenvalues. Krylov subspaces are also shift-invariant, i.e. for any
σ

Kk(A− σI, b) = Kk(A, b).

By choosing different shifts, we can see that the Krylov subspaces tend to
quickly contain not only good approximations to the eigenvector associated
with the largest magnitude eigenvalue, but to all “extremal” eigenvalues.

Most arguments about the approximation properties of Krylov subspaces
derive from the characterization of the space as all vectors p(A)b where p ∈
Pk−1 and from the spectral mapping theorem, which says that if A = V ΛV −1

then p(A) = V p(Λ)V −1. Hence, the distance between an arbitrary vector (say
d) and the Krylov subspace is

min
p∈Pk−1

∥∥V [
p(Λ)V −1b− V −1d

]∥∥ .
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As a specific example, suppose that we want to choose x̂ in a Krylov subspace
in order to minimize the residual Ax̂ − b. Writing x̂ = p(A)b, we have that
we want to minimize

‖[Ap(A)− I]b‖ = ‖q(A)b‖

where q(z) is a polynomial of degree at most k such that q(1) = 1. The best
possible residual in this case is bounded by

‖q(A)b‖ ≤ κ(V )‖q(Λ)‖‖b‖,

and so the relative residual can be bounded in terms of the condition number
of V and the minimum value that can bound q on the spectrum of A subject
to the constraint that q(0) = 1.
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