
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-11-07

1 Iteration basics

An iterative solver for Ax = b is produces a sequence of approximations
x(k) → x. We always stop after finitely many steps, based on some conver-
gence criterion, e.g.

• A residual estimate reached some threshold tolerance (relative to b or
to the initial residual).

• An error estimate reached some threshold tolerance (usually relative to
the initial error estimate).

• We reach a maximum iteration count.

We say we have solved the problem when some error-related tolerance is
satisfied. We can often reason about the cost per step in a simple way, but
estimating the steps to a solution can be quite complicated. It depends on
the nature of the iteration, the structure of the problem, the norms used to
judge convergence, and the problem tolerances.

The oldest and simplest iterations for solving linear systems are station-
ary iterations (a.k.a. fixed point iterations) and more generally relaxation
iterations. In many cases, these iterations have been supplanted by more
sophisticated methods (such as Krylov subspace methods), but they remain
a useful building block. Moreover, what is old has a way of becoming new
again; many of the classic iterations from the 1950s and 1960s are seeing
new life in applications to machine learning and large scale optimization
problems.

2 Stationary iterations

Stationary iterations are so named because the solution to a linear system is
expressed as a stationary point (fixed point) of

x(k+1) = F (x(k)).

A sufficient (though not necessary) condition for convergence is that the
mapping is a contraction, i.e. there is an α < 1 such that for all x, y in the

Bindel, Fall 2016 Matrix Computations (CS 6210)

vector space,
‖F (x)− F (y)‖ ≤ α‖x− y‖.

The constant α is the rate of convergence.
If we are solving a linear equation Ax = b, it generally makes sense to

write a fixed point iteration where the mapping F is affine. We can write
any such iteration via a splitting of the matrix A, i.e. by writing A = M −N
with M nonsingular. Then we rewrite Ax = b as

Mx = Nx+ b,

and the fixed point iteration is

Mx(k+1) = Nx(k) + b,

which we may rewrite as

x(k+1) = x(k) +M−1(b− Ax(k)).

2.1 Error iteration and convergence

We derive an error iteration by subtracting the fixed point equation from the
iteration equation

Mx(k+1) = Nx(k) + b

−[Mx = Nx+ b]

Me(k+1) = Ne(k)

or e(k+1) = Re(k) where R ≡ M−1N is the iteration matrix. A sufficient
condition for convergence is that ‖R‖ < 1 in some operator norm. The
necessary and sufficient condition is that ρ(R) < 1, where the spectral radius
ρ(R) is defined as max |λ| over all eigenvalues λ of R.

The choice of M is key to the success of an iterative method. Ideally,
we want it to be easy to solve linear systems with M (low set-up time for
any initial factorizations, and a low cost per iteration to solve), but we also
want R to have a small norm or spectral radius. Often, there is a direct
tension between these two. For example, the “best” choice of M from the
perspective of iteration count is M = A. But this is a silly thing to do: the
iteration converges after one step, but that step is to solve Ax = b!

Bindel, Fall 2016 Matrix Computations (CS 6210)

2.2 Complexity of stationary iterations

What is the cost to “solve” a system of linear equations using a stationary
iteration? We never exactly solve the system, so we need a convergence
criterion to address this problem. Let us instead ask the time to satisfy
‖e(k)‖ ≤ ε‖e(0)‖, where ‖e(0)‖ is the initial error. Supposing ‖R‖ < 1, we
know

‖e(k)‖ ≤ ‖R‖k‖e(0)‖,

so the criterion should be met after dlog(ε)/ log(‖R‖)e steps. While norms
on a finite-dimensional space are all equivalent, the constants involved may
depend on the dimension of the space. Therefore, when we analyze the
complexity of a stationary iteration, we must specify the family of norms (of
either the error or the residual) that we are using to judge convergence.

The cost per step depends on the time to solve a linear system with M and
the time to form a residual. For many of the basic stationary iterations, the
time per step is O(nnz(A)), where nnz(A) is the number of nonzero elements
in the matrix A. The number of steps, though, depends very strongly on not
just the number of nonzeros, but more detailed properties of A. Therefore, we
generally cannot describe the asymptotic complexity of an iterative method
except in the context of a very specific family of matrices (such as the 2D
Poisson model problem).

3 The classical iterations

One of the simplest stationary iterations is Richardson iteration, in which M
is chosen to be proportional to the identity:

x(k+1) = x(k) + ω(b− Ax(k))
= (I − ωA)x(k) + ωb.

The iteration matrix in this case is simply R = I − ωA. If A is symmetric
and positive definite, we can always make Richardson iteration converge with
an appropriate ω, though the convergence may be heart-breakingly slow.

Let A = D − L − U , where D is diagonal, L is strictly lower triangular,
and U is strictly upper triangular. Jacobi iteration takes M = D. When we
discuss multigrid, we will also see damped Jacobi, for which M = ω−1D with
ω < 1. Damped Jacobi is equivalent to moving in the Jacobi direction by

Bindel, Fall 2016 Matrix Computations (CS 6210)

a fraction ω of the usual step length. Like Richardson, we can always make
(damped) Jacobi converge for SPD matrices; the method also converges for
A strictly diagonally dominant.

The Gauss-Seidel iteration incorporates a little more of A into M , taking
M = D − L. For A symmetric and positive definite, this generally yields
about twice the rate of convergence of Jacobi; and it is not necessary to damp
the method to obtain convergence. However, Gauss-Seidel is less friendly to
parallel computing because the triangular solve involves computing in a strict
order.

3.1 Splitting and sweeping

While we typically analyze stationary methods in terms of a splitting, that
is not always how we implement them. We can think of either Jacobi or
Gauss-Seidel as a sweep over the variables, in which we update the value of
variable i using the ith equation and using a guess for all the other variables.
In the Jacobi iteration, the guess for the other variables comes from the
previous step; in Gauss-Seidel, the guess for the other variables involves
whatever our most up-to-date information might be. We illustrate this style
of programming with two codes, each of which compute a single sweep:

1 % [Unew] = sweep_jacobi(U, F)
2 %
3 % Run one Jacobi sweep for 2D Poisson
4 %
5 function [Un] = sweep_jacobi(U, F);
6

7 n = size(U,1)-2;
8 h2 = 1/(n+1)ˆ2;
9 Un = U;

10

11 for j = 2:n+1
12 for i = 2:n+1
13 Un(i,j) = (U(i-1,j) + U(i+1,j) + ...
14 U(i,j-1) + U(i,j+1) + h2*F(i,j))/4;
15 end
16 end
17

18 end

1 % [U] = sweep_gs(U, F)
2 %

Bindel, Fall 2016 Matrix Computations (CS 6210)

3 % Run one Gauss-Seidel sweep for 2D Poisson
4 %
5 function [U] = sweep_gs(U, F);
6

7 n = size(U,1)-2;
8 h2 = 1/(n+1)ˆ2;
9

10 for j = 2:n+1
11 for i = 2:n+1
12 U(i,j) = (U(i-1,j) + U(i+1,j) + ...
13 U(i,j-1) + U(i,j+1) + h2*F(i,j))/4;
14 end
15 end
16

17 end

3.2 Over-relaxation

In the Jacobi iteration, we take M = D; in Gauss-Seidel, we take M = D−L.
In general, Gauss-Seidel works better than Jacobi. So if we go even further
in the “Gauss-Seidel” direction, perhaps we will do better still? This is the
idea behind successive over-relaxation, which uses the splitting M = D−ωL
for ω > 1. The case ω < 1 is called under-relaxation.

The iteration converges for positive definite A for any ω ∈ (0, 2). The
optimal choice is problem-dependent; but it is rarely of interest any more,
since SOR is mostly used to accelerate more sophisticated iterative methods.
Indeed, the most widely-used variant of SOR involves a forward sweep and
a backward sweep; this SSOR iteration applied to an SPD A matrix yields
an SPD splitting matrix M , and can therefore be used to accelerate the
conjugate gradient method (which depends on this structure).

3.3 Red-black ordering

In Jacobi iteration, we can compute the updates for each equation indepen-
dently of all other updates — order does not matter, and so the method is
ripe for parallelism within one sweep1 In general, though, Gauss-Seidel and
over-relaxation methods depend on the order in which we update variables.

1There is actually not enough work per sweep to make this worthwhile with ordinary
Jacobi, usually, but it is worthwhile if we deal with the block variants.

Bindel, Fall 2016 Matrix Computations (CS 6210)

The red-black ordering (or more general multi-color ordering) trick involves
re-ordering the unknowns in our matrix by “color,” where each unknown is
assigned a color such that no neighbor in the graph of the matrix has the
same color. In the 2D Poisson case, this can be achieved with two colors,
usually dubbed “red” and “black,” applied in a checkerboard pattern.

3.4 Block iterations

So far, we have restricted our attention to point relaxation methods that
update a single variable at a time. Block versions of Jacobi and Gauss-Seidel
have exactly the same flavor as the regular versions, but they update a subset
of variables simultaneously. These methods correspond to a splitting with
M equal to the block diagonal or block lower triangular part of A.

The block Jacobi and Gauss-Seidel methods update disjoint subsets of
variables. The Schwarz methods act on overlapping subsets It turns out
that a little overlap can have a surprisingly large benefit. The book Domain
Decomposition by Smith, Gropp, and Keyes provides a nice overview.

4 Convergence of stationary iterations

For general non-symmetric (and nonsingular) matrices, none of the classical
iterations is guaranteed to converge. But there are a few classes of prob-
lems for which we can say something about the convergence of the classical
iterations, and we survey some of these now.

4.1 Strictly row diagonally-dominant problems

Suppose A is strictly diagonally dominant. Then by definition, the iteration
matrix for Jacobi iteration (R = D−1(L + U)) must satisfy ‖R‖∞ < 1, and
therefore Jacobi iteration converges in this norm. A bound on the rate of con-
vergence has to do with the strength of the diagonal dominance. Moreover,
one can show (though we will not) that in this case

‖(D − L)−1U‖∞ ≤ ‖D−1(L+ U)‖∞ < 1,

so Gauss-Seidel converges at least as quickly as Jacobi. The Richardson
iteration is also guaranteed to converge, at least so long as ω < 1/(maxi |aii|),
since this is sufficient to guarantee that all the Gershgorin disks of I − ωA
will remain within the unit circle.

Bindel, Fall 2016 Matrix Computations (CS 6210)

4.2 Symmetric and positive definite problems

4.2.1 Richardson iteration

If A is SPD with eigenvalues 0 < λ1 < . . . < λn, then Richardson iteration
satisfies

‖R‖2 = max(|1− ωλ1|, |1− ωλn|);

and the rate of convergence is optimal when ω = 2/(λ1 + λn), which yields

‖R‖2 = 1− 2λ1
λ1 + λn

= 1− 2

κ(A) + 1

If A is ill-conditioned, the iteration may be painfully slow.

4.2.2 Jacobi iteration

The error iteration for Jacobi is

e(k+1) = D−1(L+ U)e(k) = D−1(D − A)e(k).

If A is SPD, then so is D, and therefore it induces a norm; scaling the error
iteration by D1/2 gives

ê(k+1) = D−1/2(D − A)D−1/2ê(k),

where ê(k) = D1/2e(k) and

‖ê(k)‖2 = ‖e(k)‖D.

Therefore
‖e(k+1)‖D ≤ ‖D−1/2(D − A)D−1/2‖2‖e(k)‖D.

For A is symmetric and positive definite, we then have

‖D−1/2(D − A)D−1/2‖2 = max(|1− λ1|, |1− λn|),

where 0 < λ1 < . . . < λn are the eigenvalues of the pencil (A,D). We have
convergence when λn < 2, i.e. 2D − A is symmetric and positive definite.
Damped Jacobi, on the other hand, can always be made to converge for a
sufficiently large damping level ω.

The same analysis holds for block Jacobi.

Bindel, Fall 2016 Matrix Computations (CS 6210)

4.2.3 Gauss-Seidel iteration

To understand the Gauss-Seidel convergence, it is useful to look at the linear
system Ax(∗) = b as the minimizer of the convex quadratic

φ(x) =
1

2
xTAx− xT b.

Now consider a given x and consider what happens if we update to x + sei
for some s. This gives the value

φ(x+ sei) = φ(x) +
aii
2
s2 + seTi Ax− sbi.

Minimizing with respect to s yields

aiis = bi − eTi Ax

or
aii(xi + s) = bi −

∑
j 6=i

aijxj.

But this is precisely the Gauss-Seidel update! Hence, Gauss-Seidel for a
positive definite system corresponds to optimization of φ by cyclic coordinate
descent. The method decreases φ at each coordinate step, and each sweep is
guaranteed to sufficiently reduce the objective so that we ultimately converge.

The same analysis holds for block Gauss-Seidel.

4.3 Convergence on the 2D model problem

In the case of the 2D model problem, recall that the eigenvalues are

λi,j = 2 (2− cos(πih)− cos(πjh))

The extreme eigenvalues are

λ1,1 = 2h2π2 +O(h4)

and
λn,n = 4− 2h2π2 +O(h4).

The diagonal of Tn×n is simply 4I, so the Jacobi iteration matrix looks like

R =
1

4
(4I − Tn×n),

Bindel, Fall 2016 Matrix Computations (CS 6210)

or which the eigenvalues are

λi,j(R) = −(cos(πih) + cos(πjh))/2,

and the spectral radius is

ρ(R) = cos(πh) = 1− π2h2

2
+O(h4)

Thus, the number of iterations to reduce the error by 1/e scales like

2

π2h2
=

2

π2
(n+ 1)2 = O(N);

and since each step takes O(N) time, the total time to reduce the error by a
constant factor scales like O(N2).

he successive overrelaxation iteration uses a splitting

M = ω−1(D − ωL̃) = ω−1D−1(I − ωL),

which yields an iteration matrix

RSOR = (I − ωL)−1((1− ω)I + ωU).

In general, this is rather awkward to deal with, since it is a nonsymmetric
matrix. However, for the model problem with a particular ordering of un-
knowns (red-black ordering), one has that the eigenvalues µ of RJ correspond
to the eigenvalues λ of RSOR via

(λ+ ω − 1)2 = λω2µ2.

For the case ω = 1 (Gauss-Seidel), this degenerates to

λ = µ2,

and so ρ(RGS) = ρ(RJ)2. Consequently, each Gauss-Seidel iteration reduces
the error by the same amount as two Jacobi iterations, i.e. Gauss-Seidel
converges twice as fast on the model problem. This tends to be true for other
problems similar to the model problem, too. However, going from Jacobi
to Gauss-Seidel only improves the convergence rate by a constant factor; it
doesn’t improve the asymptotic complexity at all. However optimal ω (about

Bindel, Fall 2016 Matrix Computations (CS 6210)

2−O(h)) gives us a spectral radius of 1−O(h) rather than 1−O(h2), allowing
us to accelerate convergence to O(N3/2).

The red-black ordering can be convenient for parallel implementation,
because allowing the red nodes (or black nodes) to be processed in any orer
gives more flexibility for different scheduling choices. But it is also a use-
ful choice for analysis. For example, in the red-black ordering, the model
problem looks like

A =

[
4I B
BT 4I

]
The preconditioner based on Jacobi iteration is

MJ =

[
4I 0
0 4I

]
,

which results in the iteration matrix

RJ = M−1
J (MJ − A) =

1

4

[
0 B
BT 0

]
.

The eigenvalues of RJ are thus plus or minus one quarter the singular values
of B. Note that this much would have been the same for more general
problems with the same structure!

I did not drag you in class through the rest of the analysis, and I would
not expect you to repeat it on an exam. Nonetheless, it may be worth writing
it out in order to satisfy the curious. The preconditioner for Gauss-Seidel is

MGS =

[
4I 0
BT 4I

]
;

and because of the relatively simple form of this matrix, we have

M−1
GS =

1

4

[
I 0

BT/4 I

]
.

The iteration matrix for Gauss-Seidel is

RGS = M−1
GS(MGS − A) =

[
0 B/4
0 − 1

16
BTB

]
,

which has several zero eigenvalues together with some eigenvalues that are
minus 1/16 times the squared singular values of BTB. Thus, as indicated

Bindel, Fall 2016 Matrix Computations (CS 6210)

earlier, the spectral radius of RGS is the square of the spectral radius of RJ

(for the model problem).
The analysis for the general SOR case is slightly messier, but I’ll include

it here for completeness. The preconditioner is

MSOR =
1

ω

[
4I 0
ωBT 4I

]
,

and the inverse is

M−1
SOR =

ω

4

[
I 0

−ωBT/4 I

]
,

The iteration matrix is

RSOR =
1

4

[
I 0

−ωBT/4 I

] [
4(1− ω)I −ωB

0 4(1− ω)I

]
=

[
(1− ω)I −ωB/4

−(1− ω)ωBT/4 ω2BTB/16 + (1− ω)I

]
.

If λ is any eigenvalue of RSOR except 1 − ω, we can do partial Gaussian
elimination on the eigenvalue equation

(RSOR − µI)v = 0;

after eliminating the first block of variables, we have the residual system(
ω2

16
BTB − (λ+ ω − 1)I − (1− ω)ω2

16
BT ((1− ω − λ)I)−1B

)
v2 = 0,

Refactoring, we have[(
1− ω

λ+ ω − 1
+ 1

)
ω2

16
BTB − (λ+ ω − 1)I

]
v2 = 0.

From our earlier arguments, letting µ be an eigenvalue of the Jacobi matrix,
we know that µ2 is an eigenvalue of BTB/16. The corresponding eigenvalues
λ of RSOR must therefore satisfy(

1− ω
λ+ ω − 1

+ 1

)
ω2µ2 − (λ− ω − 1) = 0.

Multiplying through by λ− ω − 1, we have

(1− ω + λ+ ω − 1)ω2µ2 − (λ− ω − 1)2 = 0

or
λω2µ2 = (λ− ω − 1)2,

which is the formula noted before.

	Iteration basics
	Stationary iterations
	Error iteration and convergence
	Complexity of stationary iterations

	The classical iterations
	Splitting and sweeping
	Over-relaxation
	Red-black ordering
	Block iterations

	Convergence of stationary iterations
	Strictly row diagonally-dominant problems
	Symmetric and positive definite problems
	Richardson iteration
	Jacobi iteration
	Gauss-Seidel iteration

	Convergence on the 2D model problem

