Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-10-28

1 Canonical forms

Abstract linear algebra is about vector spaces and the operations on them,
independent of any specific choice of basis. But while the abstract view is
useful, when we compute, we are concrete, working with the vector spaces R"
and C" with a standard norm or inner product structure. A choice of basis
(or choices of bases) links the abstract view to a particular representation.
When working with an abstract inner product space, we often would like to
choose an orthonormal basis, so that the inner product in the abstract space
corresponds to the standard dot product in R™ or C". Otherwise, the choice
of basis may be arbitrary in principle — though, of course, some bases are
particularly useful for revealing the structure of the operation.

For any given class of linear algebraic operations, we have equivalence
classes of matrices that represent the operation under different choices of
bases. It is useful to choose a distinguished representative for each of these
equivalence classes, corresponding to a choice of basis that renders the struc-
ture of the operation particularly clear. These distinguished representatives
are known as canonical forms. Many of these equivalence relations have
special names, as do many of the canonical forms.

For spaces without and with inner product structure, the equivalence
relations and canonical forms associated with an operation on V of dimension
n and W of dimension n are shown in Figure 1. A major theme in the analysis
of the Hermitian eigenvalue problem follows from a pun: in the Hermitian
case in an inner product space, the equivalence relation for operators (unitary
similarity) and for quadratic forms (unitary congruence) are the same thing!.



Abstract ‘ Concrete ‘ Equivalence ‘ Canonical Form

Linear map w = Av A~ XTTAY H;“ 8|

AV =W AeCmn X e Cm ™Y € C" invertible | k = rank(A)
A~ UAV > = diag(o1, - . ., Omin(m,n))
UeCmm Ve C™™ orthogonal | SVD

Operator v = Av A~ XTAX (similarity) Jordan form

A: V=V A e X € C™™ invertible
A~ U*AU (unitary similarity) | T € C™*" upper triangular
U € C™™ unitary Schur form

Quadratic form | ¢ = v*Av A ~ X*AX (congruence) diag(/,, 0y, —1,_)

p:VxV >R | A=A CV" | X € C™™ invertible v = (vy,v_,1n) = inertia of A
A~ U*AU (unitary congruence) | diag(Aq,...,\,)
U € C™™ unitary Eigendecomposition

Table 1: Complex canonical forms (without and with inner product structure)
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2 Minimax and interlacing

The Rayleigh quotient is a building block for a great deal of theory. One
step beyond the basic characterization of eigenvalues as stationary points of
a Rayleigh quotient, we have the Courant-Fischer minimax theorem:

Theorem 1. If A\ > Xy > ... > \,, then we can characterize the eigenvalues
via optimizations over subspaces V:

v e (min pa)) = i (s a(0))

dim V=k \ 0#vey dimV=n—k+1 \ 0#veV

Proof. Write A = UAU* where U is a unitary matrix of eigenvectors. If v is
a unit vector, so is x = U*v, and we have

pa(v) =z Ax =Y " Az,
=1

i.e. pa(v)is a weighted average of the eigenvalues of A. If V is a k-dimensional
subspace, then we can find a unit vector v € V that satisfies the k£ — 1
constraints (U*v); = 0 for j = 1 through k£ — 1 (i.e. v is orthogonal to the
invariant subspace associated with the first k& — 1 eigenvectors). For this v,
pa(v) is a weighted average of Ag, Aki1, ..., An, 80 pa(v) < Ag. Therefore,

i < \p.
diIrInl%)ik <UI£IIQV 'OA(U)) = 7k

Now, if V is the range space of the first k£ columns of U, then for any v € V
we have that p4(v) is a weighted average of the first k eigenvalues, which
attains the minimal value A\, when we choose v = uy. O

One piece of the minimax theorem is that given any k-dimensional sub-
space V, the smallest value of the Rayleigh quotient over that subspace is
a lower bound on A\; and an upper bound on A, .. Taking this one step
further, we have the Cauchy interlace theorem, which relates the eigenvalues
of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.

Theorem 2. Suppose A is real symmetric (or Hermitian), and let V be
a matriz with m orthonormal columns. Then the eigenvalues of W*AW
interlace the eigenvalues of A; that is, if A has eigenvalues ay > ap > ... >
ap, and W*AW has eigenvalues 3, then

Bj € lan—m+j, o].
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Proof. Suppose A € C"" and L € C™ . The matrix W maps C™ to
C", so for each k-dimensional subspace V C C™ there is a corresponding
k-dimensional subspace of WV C C". Thus,

B; = max (min pL(v)> = max ( min PA(U)) S Qg

dimV=k \ 0£veV © dimV=k \ 0£veWV

and similarly

= gt (o)) = min (a0

dim V=m—k+1 \ 0£veV dim V=m—k+1 \ 0#ZveWYV
= min max pa(v) | > dp_mak
dim V=n—(k-+(n—m))+1 (o;éveva ( )) e

]

Another application of the minimax theorem is due to Weyl: if we write
Ak(A) for the kth largest eigenvalue of a symmetric A, then for any symmetric
A and F,

Ae(A+ E) = M(A)] < | E]2.

A related theorem is the Wielandt-Hoffman theorem:

n

Y A+ E) = A(4)? < || B3

i=1

Both these theorems provide strong information about the spectrum relative
to what we have in the nonsymmetric case (e.g. from Bauer-Fike). Not only
do we know that each eigenvalue of A + FE is close to some eigenvalue of
A, but we know that we can put the eigenvalues of A and A + E into one-
to-one correspondence. So for the eigenvalues in the symmetric case, small
backward error implies small forward error!

As an aside, note that if v is an approximate eigenvector and \ = pa(0)
for a symmetric A, then we can find an explicit form for a backward error E
such that

(A4 E)o = 0\,
by evaluate the residual r = Av — v\ and writing £ = rv* 4+ vr*. So in the
symmetric case, a small residual implies that we are near an eigenvalue. On
the other hand, it says little about the corresponding eigenvector, which may
still be very sensitive to perturbations if it is associated with an eigenvalue
that is close to other eigenvalues.
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3 Sensitivity of invariant subspaces

The eigenvalues of a symmetric matrix are perfectly conditioned. What of the
eigenvectors (or, more generally, the invariant subspaces)? Here the picture
is more complex, and involves spectral gaps. Suppose u is an eigenvector of
A associated with eigenvalue u, and the nearest other eigenvalue is at least
v apart. Then there is a perturbation F with ||E|l; = /2 for which the
eigenvalue at p and the nearest eigenvalue coalesce.

A more refined picture is given by Davis and Kahan and covered in many
textbooks since (I recommend those of Parlett and of Stewart). Let AU = UA
and AU = UA, and define R = |AU — UA||. Then

Jsimow, ) <
where 0 is the gap between the eigenvalues in A and the rest of the spectrum.
If we enforce a gap between an interval containing the eigenvalues in A and
the rest of the spectrum, we can change all the Frobenius norms into 2-
norms (or any other unitarily invariant norm). The matrix sin ©(U, U) is the
matrix of sines of the canonical angles between U and U ; if both bases are
normalized, the cosines of these canonical angles are the singular values of
UU.

The punchline for this is that an eigenvector or invariant subspace for
eigenvalues separated by a large spectral gap from everything else in the
specturm is nicely stable. But if the spectral gap is small, the vectors may
spin like crazy under perturbations.

4 Sylvester’s inertia theorem

The inertia v(A) is a triple consisting of the number of positive, negative,
and zero eigenvalues of A. Sylvester’s inertia theorem says that inertia is pre-
served under nonsingular congruence transformations, i.e. transformations of

the form
M =V*AV

where V' is nonsingular (but not necessarily unitary).

Congruence transformations are significant because they are the natural
transformations for quadratic forms defined by symmetric matrices; and the
invariance of inertia under congruence says something about the invariance
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of the shape of a quadratic form under a change of basis. For example, if A
is a positive (negative) definite matrix, then the quadratic form

o(r) = 2" Ax

defines a concave (convex) bowl; and ¢(Vz) = z*(V*AV)x has the same
shape.

As with almost anything else related to the symmetric eigenvalue prob-
lem, the minimax characterization is the key to proving Sylvester’s inertia
theorem. The key observation is that if M = V*AV and A has k positive
eigenvalues, then the minimax theorem gives us a k-dimensional subspace W,
on which A is positive definite (i.e. if W is a basis, then z*(W*AW)z > 0
for any nonzero z). The matrix M also has a k-dimensional space on which
it is positive definite, namely V~'W. Similarly, M and A both have (n — k)-
dimensional spaces on which they are negative semidefinite. So the number
of positive eigenvalues of M is k, just as the number of positive eigenvalues
of Ais k.
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