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1 Symmetric eigenvalue basics

The symmetric (Hermitian) eigenvalue problem is to find nontrivial solutions
to

Ax = xλ

where A = A∗ is symmetric (Hermitian). The symmetric eigenvalue problem
satisfies several properties that we do not have in the general case:

• All eigenvalues are real.

• There are no non-trivial Jordan blocks.

• Eigenvectors associated with distinct eigenvalues are orthogonal.

It is worthwhile to make some arguments for these facts, drawing on ideas
we have developed already:

• For any v, v∗Av = v∗A∗v = ¯v∗Av, so v∗Av must be real; and we can
write any eigenvalue as v∗Av where v is the corresponding eigenvector
(normalized to unit length).

• If (A− λI)2v = 0 for λ ∈ R and v 6= 0, then

0 = v∗(A− λI)2v = ‖(A− λI)v‖2 = 0;

and so (A−λI)v = 0 as well. But if λ is associated with a Jordan block,
there must be v 6= 0 such that (A− λI)2v = 0 and (A− λI)v 6= 0.

• If λ 6= µ are eigenvalues associated with eigenvectors u and v, then

λu∗v = u∗Av = µu∗v.

But if λ 6= µ, then (λ− µ)u∗v = 0 implies that u∗v = 0.

We write the complete eigendecomposition of A as

A = UΛU∗

where U is orthogonal or unitary and Λ is a real diagonal matrix. This is
simultaneously a Schur form and a Jordan form.
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More generally, if 〈·, ·〉 is an inner product on a vector space, the adjoint
of an operator A on that vector space is the operator A∗ s.t. for any v, w

〈Av,w〉 = 〈v, A∗w〉.

If A = A∗, then A is said to be self-adjoint. If a matrix A is self-adjoint with
respect to the M -inner product 〈v, w〉M = w∗Mv where M is Hermitian
positive definite, then H = MA is also Hermitian. In this case, we can
rewrite the eigenvalue problem

Ax = xλ

as
Hx = MAx = Mxλ.

This gives a generalized symmetric eigenvalue problem1. A standard example
involves the analysis of reversible Markov chains, for which the transition ma-
trix is self-adjoint with respect to the inner product defined by the invariant
measure.

For the generalized problem involving the matrix pencil (H,M), all eigen-
values are again real and there is a complete basis of eigenvectors; but these
eigenvectors are now M -orthogonal. That is, there exists U such that

U∗HU = Λ, U∗MU = I.

Generalized eigenvalue problems arise frequently in problems from mechan-
ics. Note that if M = RTR is a Cholesky factorization, then the generalized
eigenvalue problem for (H,M) is related to a standard symmetric eigenvalue
problem

Ĥ = R−THR−1;

if Ĥx = xλ, then Hy = Myλ where Ry = x. We may also note that
R−1ĤR = M−1H; that is Ĥ is related to A = M−1H by a similarity trans-
form. Particularly for the case when M is large and sparse, though, it may be
preferable to work with the generalized problem directly rather than convert-
ing to a standard eigenvalue problem, whether or not the latter is symmetric.

1The case where M is allowed to be indefinite is not much nicer than the general
nonsymmetric case.
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The singular value decomposition may be associated with several different
symmetric eigenvalue problems. Suppose A ∈ Rn×n has the SVD A = UΣV T ;
then

ATA = V Σ2V T

AAT = UΣ2UT[
0 A
AT 0

]
=

1

2

[
U U
V −V

] [
Σ 0
0 −Σ

] [
U U
V −V

]T
.

The picture is marginally more complicated when A is rectangular — but
only marginally.

2 Variational approaches

The Rayleigh quotient plays a central role in the theory of the symmetric
eigenvalue problem. Recall that the Rayleigh quotient is

ρA(v) =
v∗Av

v∗v
.

Substituting in A = UΛU∗ and (without loss of generality) assuming w =
U∗v is unit length, we have

ρA(v) =
N∑
i=1

λi|wi|2, with
N∑
i=1

|wi|2 = 1.

That is, the Rayleigh quotient is a weighted average of the eigenvalues. Max-
imizing or minimizing the Rayleigh quotient therefore yields the largest and
the smallest eigenvalues, respectively; more generally, for a fixed A,

δρA(v) =
2

‖v‖2
δ∗v (Av − vρA(v)) ,

and so at a stationary v (where all derivatives are zero), we satisfy the eigen-
value equation

Av = vρ(A).

The eigenvalues are the stationary values of ρA; the eigenvectors are station-
ary vectors.
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The Rayleigh quotient is homogeneous of degree zero; that is, it is invari-
ant under scaling of the argument, so ρA(v) = ρA(τv) for any τ 6= 0. Hence,
rather than consider the problem of finding stationary points of ρA generally,
we might restrict our attention to the unit sphere. That is, consider the
Lagrangian function

L(v, λ) = v∗Av − λ(v∗v − 1);

taking variations gives

δL = 2δv∗(Av − λv)− δλ(v∗v − 1)

which is zero only if Av = λv and v is normalized to unit length. In this for-
mulation, the eigenvalue is identical to the Lagrange multiplier that enforces
the constraint.

The notion of a Rayleigh quotient generalizes to pencils. If M is Hermi-
tian and positive definite, then

ρA,M(v) =
v∗Av

v∗Mv

is a weighted average of generalized eigenvalues, and the stationary vectors
satisfy the generalized eigenvalue problem

Av = MvρA,M(v).

We can also restrict to the ellipsoid ‖v‖2M = 1, i.e. consider the stationary
points of the Lagrangian

L(v, λ) = v∗Av − λ(v∗Mv − 1),

which again yields a generalized eigenvalue problem.
The analogous construction for the SVD is

φ(u, v) =
u∗Av

‖u‖‖v‖

or, thinking in terms of a constrained optimization problem,

L(u, v, λ, µ) = u∗Av − λ(u∗u− 1)− µ(v∗v − 1).
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Taking variations gives

δL = δu∗(Av − 2λu) + δv∗(A∗u− 2µv)− δλ(u∗u− 1)− δµ(v∗v − 1),

and so Av ∝ u and A∗u ∝ v. Combining these observations gives A∗Av ∝ v,
AA∗u ∝ u, which we recognize as one of the standard eigenvalue problem
formulations for the SVD, with the squared singular values as the constant
of proportionality.
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