
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-10-24

1 Logistics

• TA evaluations are due Oct 27. Please fill it out!

• There is a midterm course survey posted on CMS; please fill that out
as well!

2 Double trouble

The simple shift strategy we described in the previous section gives local
quadratic convergence, but it is not globally convergent. As a particularly
pesky example, consider what happens if we want to compute a complex
conjugate pair of eigenvalues of a real matrix. With our simple shifting
strategy, the QR iteration never produce a complex iterate, a complex shift,
or a complex eigenvalue. The best we can hope for is that our initial shift is
closer to both eigenvalues in the conjugate pair than it is to anything else in
the spectrum; in this case, we will most likely find that the last two columns
of Q(k) are converging to a basis for an invariant row subspace of A, and the
corresponding eigenvalues are the eigenvalues of the trailing 2-by-2 sub-block.

Fortunately, we know how to compute the eigenvalues of a 2-by-2 matrix!
This suggests the following shift strategy: let σk be one of the eigenvalues of
A(k)(n−1 : n, n−1 : n). Because this 2-by-2 problem can have complex roots
even when the matrix is real, this shift strategy allows the possibility that
we could converge to complex eigenvalues. On the other hand, if our original
matrix is real, perhaps we would like to consider the real Schur form, in which
U is a real matrix and T is block diagonal with 1-by-1 and 2-by-2 diagonal
blocks that correspond, respectively, to real and complex eigenvalues. If we
shift with both roots of A(k)(n− 1 : n, n− 1 : n), equivalent to computing

Q(k)R(k) = (A(k−1) − σk+I)(A(k−1) − σk−)

A(k) = (Q(k))∗A(k−1)Q(k).

There is one catch here: even if we started with A(0) in Hessenberg form, it
is unclear how to do this double-shift step in O(n2) time!
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The following fact will prove our salvation: if we Q and V are both or-
thogonal matrices and QTAQ and V TAV are both (unreduced) Hessenberg1)
and the first column of Q is the same as the first column of V , then all suc-
cessive columns of Q are unit scalar multiples of the corresponding columns
of V . This is the implicit Q theorem. Practically, it means that we can do
any sort of shifted QR step we would like in the following way:

1. Apply as a similarity any transformations in the QR decomposition
that affect the leading submatrix (1-by-1 or 2-by-2).

2. Restore the resulting matrix to Hessenberg form without further trans-
formations to the leading submatrix.

In the first step, we effectively compute the first column of Q; in the second
step, we effectively compute the remaining columns. Certainly we compute
some transformation with the right leading column; and the implicit Q theo-
rem tells us that any such transformation is basically the one we would have
computed with an ordinary QR step.

Last time, we discussed the Wilkinson strategy of choosing as a shift one
of the roots of the trailing 2-by-2 submatrix of A(k) (the one closest to the
final entry). We also noted that if we want to convert to real Schur form, the
Wilkinson shift has the distinct disadvantage that it might launch us into
the complex plane. The Francis shift strategy is to simultaneously apply a
complex conjugate pair of shifts, essentially computing two steps together:

Q(k)R(k) = (A(k−1) − σkI)(A(k−1) − σ̄kI)

= (A(k−1))2 − 2<(σk)A(k−1) + |σk|2I
A(k) = (Q(k))∗A(k−1)(Q(k)).

When the Wilkinson shift is real, we let σk be the same as the Wilkinson
shift; when the Wilkinson strategy leads to a conjugate pair of possible shifts,
we use both, maintaining efficiency by doing the steps implicitly. Let’s now
make this implicit magic a little more explicit by building code for an implicit
double-shift QR step.

Our first step will be to construct the polynomial associated with the
Francis double-shift. In the case where the trailing 2-by-2 submatrix (or 2-
by-2 block Rayleigh quotient, if one prefers) has a complex pair of eigenvalues,

1 An unreduced Hessenberg matrix has no zeros on the first subdiagonal.
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we just use its characteristic polynomial. Otherwise, we use the polynomial
associated with two steps with a Wilkinson shift.

1 % [b,c] = francis_poly(H)
2 %
3 % Compute b, c s.t. zˆ2 + b*z + c = (z-sigma)(z-conj(sigma))
4 % where sigma is the Francis double shift for H.
5 %
6 function [b,c] = francis_poly(H)
7

8 % Get shifts via trailing submatrix
9 HH = H(end-1:end,end-1:end);

10 trHH = HH(1,1)+HH(2,2);
11 detHH = HH(1,1)*HH(2,2)-HH(1,2)*HH(2,1);
12

13 if trHHˆ2 > 4*detHH % Real eigenvalues
14

15 % Use the one closer to H(n,n)
16 lHH(1) = (trHH + sqrt(trHHˆ2-4*detHH))/2;
17 lHH(2) = (trHH - sqrt(trHHˆ2-4*detHH))/2;
18 if abs(lHH(1)-H(end,end)) < abs(lHH(2)-H(end,end))
19 lHH(2) = lHH(1);
20 else
21 lHH(1) = lHH(2);
22 end
23

24 % zˆ2 + bz + c = (z-sigma_1)(z-sigma_2)
25 b = -lHH(1)-lHH(2);
26 c = lHH(1)*lHH(2);
27

28 else
29

30 % In the complex case, we want the char poly for HH
31 b = -trHH;
32 c = detHH;
33

34 end

The code francis poly gives us coefficients bk and ck for a quadratic
function sk(z) = z2 + bkz + ck. We now want to compute

Q(k)R(k) = sk(A(k−1)) = (A(k−1))2 + bkA
(k−1) + ckI

A(k) = (Q(k))∗A(k−1)(Q(k)).

The trick is to realize that all the iterates A(k) are Hessenberg, and the
Hessenberg form for a matrix is usually unique (up to signs). Therefore, we



Bindel, Fall 2016 Matrix Computations (CS 6210)

compute the first Householder transformation W in a QR factorization of
sk(A(k) explicitly. The first column of Q(k) is the same as the first column of
W . The remaining columns of Q(k) can be determined by the requirement
that A(k) is in Hessenberg form. We compute them implicitly by applying the
usual Hessenberg reduction algorithm to B = WA(k−1)W , taking advantage
of the fact that B has special structure to do O(n2) work. Each step of the
reduction moves a “bulge” down the diagonal by one.

1 % [H] = hessqr_francis(H)
2 %
3 % Compute a (double) implicit Hessenberg QR step with Francis shift.
4 % Compare to hessqr_basic.
5 %
6 function [H] = hessqr_francis(H)
7 % Implicit QR step using a Francis double shift
8 % (there should really be some re-scalings for floating point)
9

10 % Compute double-shift poly and initial column of Hˆ2 + b*H + c*I
11 [b,c] = francis_poly(H);
12 C1 = H(1:3,1:2)*H(1:2,1);
13 C1(1:2) = C1(1:2) + b*H(1:2,1);
14 C1(1) = C1(1) + c;
15

16 % Apply a similarity associated with the first step of QR on C
17 v = house(C1);
18 H(1:3,:) = H(1:3,:)-2*v*(v’*H(1:3,:));
19 H(:,1:3) = H(:,1:3)-(H(:,1:3)*(2*v))*v’;
20

21 % Do "bulge chasing" to return to Hessenberg form
22 n = length(H);
23 for j = 1:n-2
24 k = min(j+3,n);
25

26 % -- Find W = I-2vv’ to put zeros below H(j+1,j), H := WHW’
27 v = house(H(j+1:k,j));
28 H(j+1:k,:) = H(j+1:k,:)-2*v*(v’*H(j+1:k,:));
29 H(:,j+1:k) = H(:,j+1:k)-(H(:,j+1:k)*(2*v))*v’;
30 H(k,j) = 0;
31

32 end
33

34 end

In the LAPACK codes, the Francis double-shift strategy is mixed with
some “exceptional shifts” that occur every few iterations. These exceptional
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shifts serve to keep the algorithm from getting stuck in certain pathological
situations (e.g. a cyclic permutation matrix).

Deflation

A sequence of implicit doubly-shifted QR steps with the Francis shift will
usually give us rapid convergence of a trailing 1-by-1 or 2-by-2 submatrix to
a block of a Schur factorization. As this happens, the trailing row (or two
rows) becomes very close to zero. When the values in these rows are close
enough to zero, we deflate by setting them equal to zero. This corresponds
to a small perturbation to the original problem.

The following code converts a Hessenberg matrix to a block upper trian-
gular matrix with 1-by-1 and 2-by-2 blocks. To reduce this matrix further to
real Schur form, we would need to make an additional pass to further reduce
any 2-by-2 block with real eigenvalues into a pair of 1-by-1 blocks.

1 % [H] = hessqr(H)
2 %
3 % Toy implementation of Hessenberg QR iteration with Francis double
4 % shift strategy and deflation.
5 %
6 function [H] = hessqr(H)
7

8 n = length(H);
9 tol = norm(H,’fro’) * 1e-8;

10 k = 0;
11 while n > 2
12 if abs(H(n,n-1)) < tol
13 fprintf(’At step %d: Deflated 1-by-1 block\n’, k);
14 H(n,n-1) = 0;
15 n = n-1;
16 elseif abs(H(n-1,n-2)) < tol
17 fprintf(’At step %d: Deflated 2-by-2 block\n’, k);
18 H(n-1,n-2) = 0;
19 n = n-2;
20 else
21 H(1:n,1:n) = hessqr_francis(H(1:n,1:n));
22 k = k+1;
23 end
24 end
25

26 end
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More careful deflation criteria are usually used in practice; see the book.
This criterion at least corresponds to small normwise perturbations to the
original problem, but it may result in less accurate estimates of small eigen-
values than we could obtain with a more aggressive criterion.

3 Stability of the method

Each step of the implicitly double-shifted QR iteration changes the matrix
only with orthogonal transformations (which are perfectly conditioned) or
deflations. Hence, the QR iteration is backward stable. However, this is
not the same as saying that the method is forward stable! For forward
stability, the conditioning of the eigenvalues is critical, and multiple (or nearly
multiple) eigenvalues of multiplicity m usually inherit an O(ε1/m) error, as
we saw in our earlier discussion of sensitivity.

The intermediate computations in the QR code as given above are prone
to scaling problems, and so the basic QR codes in LAPACK (dlahqr) uses
a more careful construction of a scaled copy of the first Householder trans-
formation.

4 The state of the art

The current state of the art in QR iterations is the LAPACK code dgehqr
written by Ralph Byers, which is based on an award-winning set of papers by
Braman, Byers, and Mathias. This code uses the following general strategy:

1. Run the basic QR iteration to find the eigenvalues of a trailing b × b
submatrix. Apply the transformations to the whole matrix, resulting
in a “spike” to the left of the triangularized portion.

2. Look for converged eigenvalues in the trailing submatrix by analyzing
the “spike” to find small elements. Deflate any eigenvalues found (and
there may be several). This is called aggressive early deflation.

3. Use several of the remaining eigenvalues from the Rayleigh quotient
block as a sequence of successive shifts. These can be run simultane-
ously by chasing a sequence of closely-spaced bulges down the main
diagonal. The similarity transformations associated are applied in a
blocky way to get good cache performance.
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