
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-10-21

1 Hessenberg matrices and QR steps in O(n2)

A matrix H is said to be upper Hessenberg if it has nonzeros only in the
upper triangle and the first subdiagonal. For example, the nonzero structure
of a 5-by-5 Hessenberg matrix is

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 .
For any square matrix A, we can find a unitarily similar Hessenberg matrix
H = Q∗AQ by the following algorithm:

1 % [H,Q] = hessred(A)
2 %
3 % Compute the Hessenberg decomposition H = Q’*A*Q using
4 % Householder transformations.
5 %
6 function [H,Q] = hessred(A)
7

8 n = length(A);
9 Q = eye(n); % Orthogonal transform so far

10 H = A; % Transformed matrix so far
11

12 for j = 1:n-2
13

14 % -- Find W = I-2vv’ to put zeros below H(j+1,j)
15 u = H(j+1:end,j);
16 u(1) = u(1) + sign(u(1))*norm(u);
17 v = u/norm(u);
18

19 % -- H := WHW’, Q := QW
20 H(j+1:end,:) = H(j+1:end,:)-2*v*(v’*H(j+1:end,:));
21 H(:,j+1:end) = H(:,j+1:end)-(H(:,j+1:end)*(2*v))*v’;
22 Q(:,j+1:end) = Q(:,j+1:end)-(Q(:,j+1:end)*(2*v))*v’;
23

24 end
25

26 end



Bindel, Fall 2016 Matrix Computations (CS 6210)

A Hessenberg matrix H is very nearly upper triangular, and is an inter-
esting object in its own right for many applications. For example, in control
theory, one sometimes would like to evaluate a transfer function

h(s) = cT (sI − A)−1b+ d

for many different values of s. Done naively, it looks like each each evaluation
would require O(n3) time in order to get a factorization of sI − A; but if
H = Q∗AQ is upper Hessenberg, we can write

h(s) = (Qc)∗(sI −H)−1(Qb) + d,

and the Hessenberg structure of sI−H allows us to do Gaussian elimination
on it in O(n2) time.

Just as it makes it cheap to do Gaussian elimination, the special structure
of the Hessenberg matrix also makes the Householder QR routine very eco-
nomical. The Householder reflection computed in order to introduce a zero
in the (j + 1, j) entry needs only to operate on rows j and j + 1. Therefore,
we have

Q∗H = Wn−1Wn−2 . . .W1H = R,

where Wj is a Householder reflection that operates only on rows j and j+ 1.
Computing R costs O(n2) time, since each Wj only affects two rows (O(n)
data). Now, note that

RQ = R(W1W2 . . .Wn−1);

that is, RQ is computed by an operation that first mixes the first two
columns, then the second two columns, and so on. The only subdiagonal
entries that can be introduced in this process lie on the first subdiagonal,
and so RQ is again a Hessenberg matrix. Therefore, one step of QR iter-
ation on a Hessenberg matrix results in another Hessenberg matrix, and a
Hessenberg QR step can be performed in O(n2) time.

Putting these ideas in concrete form, we have the following code

1 % [H] = hessqr_basic(H)
2 %
3 % Compute one basic (unshifted) implicit Hessenberg QR step via
4 % Householder transformations.
5 %
6 function H = hessqr_basic(H)



Bindel, Fall 2016 Matrix Computations (CS 6210)

7

8 n = length(H);
9 V = zeros(2,n-1);

10

11 % Compute the QR factorization
12 for j = 1:n-1
13

14 % -- Find W_j = I-2vv’ to put zero into H(j+1,j)
15 u = H(j:j+1,j);
16 u(1) = u(1) + sign(u(1))*norm(u);
17 v = u/norm(u);
18 V(:,j) = v;
19

20 % -- H := W_j H
21 H(j:j+1,:) = H(j:j+1,:)-2*v*(v’*H(j:j+1,:));
22

23 end
24

25 % Compute RQ
26 for j = 1:n-1
27

28 % -- H := WHW’, Q := QW
29 v = V(:,j);
30 H(:,j:j+1) = H(:,j:j+1)-(H(:,j:j+1)*(2*v))*v’;
31

32 end
33

34 end

2 Inverse iteration and the QR method

When we discussed the power method, we found that we could improve
convergence by a spectral transformation that mapped the eigenvalue we
wanted to something with large magnitude (preferably much larger than the
other eigenvalues). This was the shift-invert strategy. We already know there
is a connection leading from the power method to orthogonal iteration to the
QR method, which we can summarize with a small number of formulas.
Let us see if we can follow the same path to uncover a connection from
inverse iteration (the power method with A−1, a special case of shift-invert in
which the shift is zero) to QR. If we call the orthogonal factors in orthogonal



Bindel, Fall 2016 Matrix Computations (CS 6210)

iteration Q(k) (Q(0) = I) and the iterates in QR iteration A(k), we have

Ak = Q(k)R(k)(1)

A(k) = (Q(k))∗A(Q(k)).(2)

In particular, note that because R(k) are upper triangular,

Ake1 = (Q(k)e1)r
(k)
11 ;

that is, the first column of Q(k) corresponds to the kth step of power itera-
tion starting at e1. What happens when we consider negative powers of A?
Inverting (1), we find

A−k = (R(k))−1(Q(k))∗

The matrix R̃(k) = (R(k))−1 is again upper triangular; and if we look carefully,
we can see in this fact another power iteration:

e∗nA
−k = e∗nR̃

(k)(Q(k))∗ = r̃(k)nn (Q(k)en)∗.

That is, the last column of Q(k) corresponds to a power iteration converging
to a row eigenvector of A−1.

3 Shifting gears

The connection from inverse iteration to orthogonal iteration (and thus to
QR iteration) gives us a way to incorporate the shift-invert strategy into QR
iteration: simply run QR on the matrix A− σI, and the (n, n) entry of the
iterates (which corresponds to a Rayleigh quotient with an increasingly-good
approximate row eigenvector) should start to converge to λ − σ, where λ is
the eigenvalue nearest σ. Put differently, we can run the iteration:

Q(k)R(k) = A(k−1) − σI

A(k) = R(k)Q(k) + σI.

If we choose a good shift, then the lower right corner entry of A(k) should
converge to the eigenvalue closest to σ in fairly short order, and the rest of
the elements in the last row should converge to zero.

The shift-invert power iteration converges fastest when we choose a shift
that is close to the eigenvalue that we want. We can do even better if we



Bindel, Fall 2016 Matrix Computations (CS 6210)

choose a shift adaptively, which was the basis for running Rayleigh quotient
iteration. The same idea is the basis for the shifted QR iteration:

Q(k)R(k) = A(k−1) − σkI(3)

A(k) = R(k)Q(k) + σkI.(4)

This iteration is equivalent to computing

Q(k)R(k) =
n∏

j=1

(A− σjI)

A(k) = (Q(k))∗A(Q(k))

Q(k) = Q(k)Q(k−1) . . . Q(1).

What should we use for the shift parameters σk? A natural choice is
to use σk = e∗nA

(k−1)en, which is the same as σk = (Q(k)en)∗A(Q(k)en), the

Rayleigh quotient based on the last column of Q(k). This simple shifted QR
iteration is equivalent to running Rayleigh iteration starting from an initial
vector of en, which we noted before is locally quadratically convergent.


	Hessenberg matrices and QR steps in O(n2)
	Inverse iteration and the QR method
	Shifting gears

