26

end

Notes for 2016-10-21

1 Hessenberg matrices and QR steps in $O(n^2)$

A matrix H is said to be *upper Hessenberg* if it has nonzeros only in the upper triangle and the first subdiagonal. For example, the nonzero structure of a 5-by-5 Hessenberg matrix is

For any square matrix A, we can find a unitarily similar Hessenberg matrix $H = Q^*AQ$ by the following algorithm:

```
% [H,Q] = hessred(A)
   % Compute the Hessenberg decomposition H = Q' *A*Q using
   % Householder transformations.
   function [H,Q] = hessred(A)
    n = length(A);
    Q = eye(n); % Orthogonal transform so far
               % Transformed matrix so far
    H = A;
10
11
    for j = 1:n-2
12
      % -- Find W = I-2vv' to put zeros below H(j+1,j)
      u = H(j+1:end, j);
      u(1) = u(1) + sign(u(1)) * norm(u);
        = u/norm(u);
      % -- H := WHW', Q := QW
      H(j+1:end,:) = H(j+1:end,:)-2*v*(v'*H(j+1:end,:));
      H(:, j+1:end) = H(:, j+1:end) - (H(:, j+1:end) * (2*v)) *v';
21
      Q(:, j+1:end) = Q(:, j+1:end) - (Q(:, j+1:end) * (2*v)) *v';
23
    end
24
25
```

A Hessenberg matrix H is very nearly upper triangular, and is an interesting object in its own right for many applications. For example, in control theory, one sometimes would like to evaluate a $transfer\ function$

$$h(s) = c^{T}(sI - A)^{-1}b + d$$

for many different values of s. Done naively, it looks like each each evaluation would require $O(n^3)$ time in order to get a factorization of sI - A; but if $H = Q^*AQ$ is upper Hessenberg, we can write

$$h(s) = (Qc)^*(sI - H)^{-1}(Qb) + d,$$

and the Hessenberg structure of sI - H allows us to do Gaussian elimination on it in $O(n^2)$ time.

Just as it makes it cheap to do Gaussian elimination, the special structure of the Hessenberg matrix also makes the Householder QR routine very economical. The Householder reflection computed in order to introduce a zero in the (j+1,j) entry needs only to operate on rows j and j+1. Therefore, we have

$$Q^*H = W_{n-1}W_{n-2}\dots W_1H = R,$$

where W_j is a Householder reflection that operates only on rows j and j+1. Computing R costs $O(n^2)$ time, since each W_j only affects two rows (O(n) data). Now, note that

$$RQ = R(W_1W_2 \dots W_{n-1});$$

that is, RQ is computed by an operation that first mixes the first two columns, then the second two columns, and so on. The only subdiagonal entries that can be introduced in this process lie on the first subdiagonal, and so RQ is again a Hessenberg matrix. Therefore, one step of QR iteration on a Hessenberg matrix results in another Hessenberg matrix, and a Hessenberg QR step can be performed in $O(n^2)$ time.

Putting these ideas in concrete form, we have the following code

```
1  % [H] = hessqr_basic(H)
2  %
3  % Compute one basic (unshifted) implicit Hessenberg QR step via
4  % Householder transformations.
5  %
6 function H = hessqr_basic(H)
```

```
n = length(H);
     V = zeros(2, n-1);
9
     % Compute the QR factorization
11
     for j = 1:n-1
12
13
       % -- Find W_{j} = I-2vv' to put zero into H(j+1,j)
          = H(j:j+1,j);
       u(1) = u(1) + sign(u(1)) * norm(u);
          = u/norm(u);
17
       V(:,j) = v;
18
19
       % -- H := W_j H
20
      H(j:j+1,:) = H(j:j+1,:)-2*v*(v'*H(j:j+1,:));
22
     end
23
24
     % Compute RQ
25
     for j = 1:n-1
26
27
       % -- H := WHW', Q := QW
28
       \nabla = \nabla (:, \dot{\uparrow});
      H(:,j:j+1) = H(:,j:j+1) - (H(:,j:j+1)*(2*v))*v';
30
31
     end
32
33
   end
3.4
```

2 Inverse iteration and the QR method

When we discussed the power method, we found that we could improve convergence by a spectral transformation that mapped the eigenvalue we wanted to something with large magnitude (preferably much larger than the other eigenvalues). This was the *shift-invert* strategy. We already know there is a connection leading from the power method to orthogonal iteration to the QR method, which we can summarize with a small number of formulas. Let us see if we can follow the same path to uncover a connection from inverse iteration (the power method with A^{-1} , a special case of shift-invert in which the shift is zero) to QR. If we call the orthogonal factors in orthogonal

iteration $\underline{Q}^{(k)}$ ($\underline{Q}^{(0)}=I$) and the iterates in QR iteration $A^{(k)}$, we have

$$A^k = Q^{(k)}\underline{R}^{(k)}$$

(2)
$$A^{(k)} = (Q^{(k)})^* A(Q^{(k)}).$$

In particular, note that because $R^{(k)}$ are upper triangular,

$$A^k e_1 = (\underline{Q}^{(k)} e_1) r_{11}^{(k)};$$

that is, the first column of $\underline{Q}^{(k)}$ corresponds to the kth step of power iteration starting at e_1 . What happens when we consider negative powers of A? Inverting (1), we find

$$A^{-k} = (R^{(k)})^{-1}(Q^{(k)})^*$$

The matrix $\tilde{R}^{(k)} = (\underline{R}^{(k)})^{-1}$ is again upper triangular; and if we look carefully, we can see in this fact another power iteration:

$$e_n^*A^{-k} = e_n^*\tilde{R}^{(k)}(Q^{(k)})^* = \tilde{r}_{nn}^{(k)}(Q^{(k)}e_n)^*.$$

That is, the last column of $Q^{(k)}$ corresponds to a power iteration converging to a row eigenvector of A^{-1} .

3 Shifting gears

The connection from inverse iteration to orthogonal iteration (and thus to QR iteration) gives us a way to incorporate the shift-invert strategy into QR iteration: simply run QR on the matrix $A - \sigma I$, and the (n, n) entry of the iterates (which corresponds to a Rayleigh quotient with an increasingly-good approximate row eigenvector) should start to converge to $\lambda - \sigma$, where λ is the eigenvalue nearest σ . Put differently, we can run the iteration:

$$Q^{(k)}R^{(k)} = A^{(k-1)} - \sigma I$$
$$A^{(k)} = R^{(k)}Q^{(k)} + \sigma I.$$

If we choose a good shift, then the lower right corner entry of $A^{(k)}$ should converge to the eigenvalue closest to σ in fairly short order, and the rest of the elements in the last row should converge to zero.

The shift-invert power iteration converges fastest when we choose a shift that is close to the eigenvalue that we want. We can do even better if we choose a shift *adaptively*, which was the basis for running Rayleigh quotient iteration. The same idea is the basis for the *shifted QR iteration*:

(3)
$$Q^{(k)}R^{(k)} = A^{(k-1)} - \sigma_k I$$

(4)
$$A^{(k)} = R^{(k)}Q^{(k)} + \sigma_k I.$$

This iteration is equivalent to computing

$$\underline{Q}^{(k)}\underline{R}^{(k)} = \prod_{j=1}^{n} (A - \sigma_j I)$$

$$A^{(k)} = (\underline{Q}^{(k)})^* A(\underline{Q}^{(k)})$$

$$Q^{(k)} = Q^{(k)} Q^{(k-1)} \dots Q^{(1)}.$$

What should we use for the shift parameters σ_k ? A natural choice is to use $\sigma_k = e_n^* A^{(k-1)} e_n$, which is the same as $\sigma_k = (\underline{Q}^{(k)} e_n)^* A(\underline{Q}^{(k)} e_n)$, the Rayleigh quotient based on the last column of $\underline{Q}^{(k)}$. This simple shifted QR iteration is equivalent to running Rayleigh iteration starting from an initial vector of e_n , which we noted before is locally quadratically convergent.