Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-10-19

1 Orthogonal iteration revisited

Last time, we described a generalization of the power methods to compute
invariant subspaces. That is, starting from some initial subspace V@, we
defined the sequence

V(kJrl) _ AV(k) — Ak+1V(O).

Under some assumptions, the spaces V¥) asymptotically converge to an in-
variant subspace of A. In order to actually implement this iteration, though,
we need a concrete representation of each of the subspaces in terms of a basis.
In the case of the power method, we normalized our vector at each step to
have unit length. The natural generalization in the case of subspace iteration
is to normalize our bases to be orthonormal at each step. If the columns of
V®) form an orthonormal basis for V¥, then the columns of AV®) form
an orthonormal basis for V#+D: and we can compute an orthonormal basis
VD for YEHD by an economy QR decomposition:

VD) D) A1 (k)

This orthogonal iteration gives us a sequence of orthonormal bases V*+1) for
the spaces V.

We also mentioned in the last lecture that orthogonal iteration has the
marvelous property that it runs subspace iteration for a sequence of nested
subspaces. Using MATLAB notation, we have that for any [,

VEDC T DRED Q1 1:0) = AVB(1:00).

So by running orthogonal iteration on an m-dimensional subspace, we mag-
ically also run orthogonal iteration on an [-dimensional subspaces for each
[< m. Recall that the Schur factorization

AU =UT

involves an orthonormal basis U such that for any [, U(:,1 : [) spans an
[-dimensional invariant subspace (this is from the triangularity of 7). So
we might hope that if we ran orthogonal iteration on all of A, we would

Bindel, Fall 2016 Matrix Computations (CS 6210)

eventually converge to the U matrix in the Schur factorization. That is,
starting from Q(O) = I, we iterate

(1) QU R+ — Q)

in the hopes that the columns of Q(k), since they span nested bases under-
going subspace iteration, will converge to the unitary factor U.
Now, consider the first two steps of this iteration:

OWRM — A

0P R — 400

If we multiply the second equation on the right by R™Y, we have

(2) QORARM = AQWRM = A2,

Similarly, if we multiply Q(3)R(3) = AQ(S) by R RM | we have
QB RB RAORM = AQB R RM) = 43,

where the last equality comes from (2). We can keep going in this fashion,
and if we define the upper triangular matrix R® = R®RE-D RO we
have

QW RH — A,

That is, Q(k) is precisely the unitary factor in a QR decomposition of A*.
This fact may be unsurprising if we consider that we derived this orthogonal
iteration from the power method.

2 Orthogonal iteration to QR

The focus of orthogonal iteration is the orthogonal (or unitary) factor in the
Schur form. The upper triangular Schur factor fades into the background,
which is a pity; this is, after all, where we learn the eigenvalues. But through
a bit of algebraic trickery, it turns out that we can re-invent orthogonal
iteration as an iteration for the upper triangular factor. The steps for this
transformation are as follows:

Bindel, Fall 2016 Matrix Computations (CS 6210)

1. The orthogonal iteration Q*TVR® = AQ™ is a generalization of the
power method. In fact, the first column of this iteration is ezactly the
power iteration. In general, the first p columns of Q™ are converging
to an orthonormal basis for a p-dimensional invariant subspace associ-
ated with the p eigenvalues of A with largest modulus (assuming that
there aren’t several eigenvalues with the same modulus to make this
ambiguous).

2. If all the eigenvalues have different modulus, orthogonal iteration ulti-
mately converges to the orthogonal factor in a Schur form

AU =UT

What about the T factor? Note that T'= U* AU, so a natural approx-
imation to 71" at step k& would be

AR — (Q(k))*AQ(k),
and from the definition of the subspace iteration, we have
A®) — (QW)r QU+ RK — k) R4,

where Q) = (Q™)*Q*™ is unitary.
3. Note that

ABFD — (U)« B QD) — (W)= 4B Q) — REIQE).

Thus, we can go from A® to A®+D directly without the orthogonal
factors from subspace iteration, simply by computing

AR — QW) R
A Z R Q)

This is the QR iteration.

Under some restrictions on A, the matrices A® will ultimately converge
to the triangular Schur factor of A. But we have two problems:

Bindel, Fall 2016 Matrix Computations (CS 6210)

1. Each step of the QR iteration requires a QR factorization, which is an
O(n®) operation. This is rather expensive, and even in the happy case
where we might be able to get each eigenvalue with a constant number
of steps, O(n) total steps at a cost of O(n?®) each gives us an O(n*)
algorithm. Given that everything else we have done so far costs only
O(n?), an O(n?) cost for eigenvalue computation seems excessive.

2. Like the power iteration upon which it is based, the basic iteration con-
verges linearly, and the rate of convergence is related to the ratios of
the moduli of eigenvalues. Convergence is slow when there are eigen-
values of nearly the same modulus, and nonexistent when there are
eigenvalues with the same modulus.

We describe next how to overcome these two difficulties.

	Orthogonal iteration revisited
	Orthogonal iteration to QR

