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1 Choice of regularization

All of the regularization methods we have discussed share a common trait:
they define a parametric family of models. With more regularization, we
restrict the range of models we can easily generate (adding bias), but we
also reduce the sensitivity of the fit (reducing variance). The choice of the
regularization parameter is a key aspect of these methods, and we now briefly
discuss three different ways of systematically making that choice. In all cases,
we rely on the assumption that the sample observations we use for the fit
are representative of the population of observations where we might want to
predict.

1.1 Morozov’s discrepancy principle

Suppose that we want to fit Ax ≈ b̂ by regularized least squares, and the
(noisy) observation vector b̂ is known to be within some error bound ‖e‖ of
the true values b. The discrepancy principle says that we should choose the
regularization parameter so the residual norm is approximately ‖e‖. That is,
we seek the most stable fitting problem we can get subject to the constraint
that the residual error for the regularized solution (with the noisy vector b̂)
is not much bigger than we would get from unknown true solution.

One of the most obvious drawbacks of the discrepancy principle is that
it requires that we have an estimate for the norm of the error in the data.
Sadly, such estimates are not always available.

1.2 The L-curve

A second approach to the regularization parameter is the L-curve. If we
draw a parametric curve of the residual error versus solution norm on a log-
log plot, with log ‖rλ‖ on the x axis and log ‖xλ‖ on the y axis, we often see
an “L” shape. In the top of the vertical bar (small λ), we find that increasing
regularization decreases the solution norm significantly without significantly
increasing the residual error. Along the end of the horizontal part, increasing
regularization increases the residual error, but does not significantly help with
the solution norm. We want the corner of the curve, where the regularization
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is chosen to minimize the norm of the solution subject to the constraint that
the residual is close to the smallest possible residual (which we would have
without regularization).

Computing the inflection point on the L-curve is a neat calculus exercise
which we will not attempt here.

1.3 Generalized cross-validation

The idea with (generalized) cross-validation is to choose the parameter by
fitting the model on a subset of the data and testing on the remaining data.
We may do this with multiple partitions into data used for fitting versus data
reserved for checking predictions. We often choose regularization parameters
to give the smallest error on the predictions in a cross-validation study.

2 Nearness problems

So far, we have considered problems of miminizing a residual error where the
unknown is a vector. What if instead the unknown is a matrix? There are
a variety of such matrix nearness problems, and this is a good place in the
course for them.

2.1 Nearest symmetric matrix

As a “warm-up,” we consider the problem of finding the symmetric matrix
A that is nearest to some target (nonsymmetric) matrix B:

minimizeA=AT ‖B − A‖2F .

There are several ways to tackle this problem, but we want to use it as
an excuse once again to relate a least squares problem to an orthogonal
decomposition. In this case, we note that

B = H + S, H ≡ 1

2
(B +BT ), S ≡ 1

2
(B −BT ).

The matrices H and S are respectively symmetric (H = HT ) and skew-
symmetric (S = −ST ). We observe that the Frobenius inner product of any
symmetric H and skew S is

〈H,S〉F =
∑
i,j

hijsij =
∑
i>j

hij(sij + sji) = 0,
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i.e. the set of all square matrices can be written as the direct sum of the set
of symmetric matrices and an orthogonal set of skew matrices. In particular,
this means that we can invoke the Pythagorean theorem:

‖B − A‖2F = ‖H − A‖2F + 2〈(H − A), S〉F + ‖S‖2 = ‖H − A‖2F + ‖S‖2.

So we decompose the objective into a piece that we can set exactly equal
to zero and a piece that is independent of the optimization variable. The
solution to the nearest symmetric matrix problem is H = A, and the distance
is ‖S‖F .

We can pose the same question in the operator two-norm (rather than the
Frobenius norm), and we get mostly the same answer. The main difference is
that in the case of the two-norm, the minimizing A is generally not unique.

2.2 Nearest orthogonal matrix

Now consider the problem for B ∈ Rm×n and m ≥ n

minimizeQ:QTQ=I‖B −Q‖2F .

This is sometimes known as the orthogonal Procrustes problem. IfB = UΣV T

is a full SVD, then by invariance of the Frobenius norm under orthogonal
transformations,

‖B −Q‖2F = ‖Σ− UTQV ‖2F = ‖Σ− Q̃‖2F .

Therefore, we reduce to the problem of finding a matrix Q̃ with orthonormal
columns that is as close as possible to a diagonal matrix with positive diagonal
entries. Considering just the first column

‖w − σ1e1‖2 = (x− σ1)2 + ‖y‖2, w =

[
x
y

]
and expanding, we have

‖w − σ1e21‖ = x2 − 2σ1x+ σ2
1 + ‖y‖2 = 1 + σ2

1 − 2σ1x

which is minimal when x is as large as possible (x = 1). A similar argument
shows that the closest unit length vector to column k of Σ will be ek. There-
fore, even if we only insisted that each column was unit length (rather than
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insisting on orthonormality), the closest matrix to Σ would be the identity
matrix. Hence Q̃ = Ik consists of the leading k columns of the identity, and
Q = UIkV

T is the same as Q = U1V
T where U1 is the m×n submatrix of U

from the economy SVD.
Note that if A = UΣV T is an economy SVD and Q = UV T , we have

A = QH, H = V ΣV T .

The matrix H is symmetric and positive semi-definite, while Q has orthonor-
mal columns. This decomposition is known as the polar decomposition of A,
and it generalizes the polar decomposition of a vector into a (unit length)
direction times a non-negative length.

2.3 Other matrix nearness problems

We have far from exhausted the possible matrix nearness problems with these
two examples. Perhaps the obvious next one to cover, had we not run out
of time, would be the Eckart-Young theorem: the nearest rank k matrix to
a given matrix A (in either the Frobenius or operator 2-norm) is

L = Ak =
k∑
i=1

σiuiv
T
i .

Another entertaining example is the distance to instability — that is, given
a matrix A whose eigenvalues all have negative real part, what is the nearest
matrix with purely imaginary eigenvalues? The Eckart-Young theorem is
in any of the recommended texts; and Nick Higham has a classic paper on
matrix nearness problems with these and several others.
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