Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-10-03

1 Stability of QR

Last time, we discussed QR factorization via Householder reflectors or Givens
rotations. It is not too difficult to show that applying a Givens rotations or
Householder reflector to a matrix is backward-stable: if P is the desired
transformation, the floating point result of PA is

PA=(P+E)A,  [[E] < O(macn) || Al

Moreover, orthogonal matrices are perfectly conditioned! Taking a prod-
uct of 7 matrices is also fine; the result has backward error bounded by
JO(€macn) [|A||. As a consequence, QR decomposition by Givens rotations or
Householder transformations is ultimately backward stable.

The stability of orthogonal matrices in general makes them a marvelous
building block for numerical linear algebra algorithms, and we will take ad-
vantage of this again when we discuss eigenvalue solvers.

2 Sparse QR

Just as was the case with LU, the QR decomposition admits a sparse variant.
And, as with LU, sparsity of the matrix A € R™*" alone is not enough
to guarantee sparsity of the factorization! Hence, as with solving linear
systems, our recommendation for solving sparse least squares problems varies
depending on the actual sparse structure.

Recall that the R matrix in QR factorization is also the Cholesky factor
of the Gram matrix: G = ATA = RTR. Hence, the sparsity of the R factor
can be inferred from the sparsity of G using the ideas we talked about when
discussing sparse Cholesky. If the rows of A correspond to experiments and
columns correspond to factors, the nonzero structure of GG is determined by
which experiments share common factors: in general g;; # 0 if any experi-
ment involves both factors ¢ and factor j. So a very sparse A matrix may
nonetheless yield a completely dense G matrix. Of course, if R is dense, that
is not the end of the world! Factoring a dense n X m matrix is pretty cheap
for n in the hundreds or even up to a couple thousand, and solves with the
resulting triangular factors are quite inexpensive.
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If one forms @ at all, it is often better to work with @ as a product of
(sparse) Householder reflectors rather than forming the elements of ). One
may also choose to use a “Q-less QR decomposition” in which the matrix @)
is not kept in any explicit form; to form Q7b in this case, we would use the
formulation QTb = R~TATb.

As with linear solves, least squares solves can be “cleaned up” using
iterative refinement. This is a good idea in particular when using ()-less
QR. If A is an approximate least squares solve (e.g. via the slightly-unstable
normal equations approach), iterative refinement looks like

rF=b— Az*

" =2k — RTY(RTT(ATry)).

This approach can be useful even when A is moderately large and dense;
for example, R might be computed from a (scaled) QR decomposition of a
carefully selected subset of the rows of A.

3 Weighted least squares and company

So far, we have dealt primarily with the least squares problem with respect
to the Euclidean norm associated with the standard inner product on R™.
However, everything we have said works for other inner products as well. Let
(-,-)ar be any inner product on R™, and let || - ||3; be the associated inner
product; then the problem

minimize || Az — b||3,

yields the normal equations
ATMr = 0.

We already saw one version of this when considering the problem of regression
with normal errors drawn from a joint normal distribution; in that case, M
was the inverse covariance matrix. But that is not the only place where the
more general least squares picture is useful.
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3.1 Least squares in polynomials spaces

For example, to optimally approximate a function on [—1, 1] by a polynomial
p of degree at most d, we would write

Vg € Pa, / a(@)o@) — f()) dz =0,

If we were to express this in terms of the ordinary monomial basis, we could
rewrite p(x) = Z;{:o ¢;jz?, and have

/_11 '’ (Z c;jr! — f(x)) dz,

Ge=d

where ¢;; = f_ll 2 dr and d; = f_ll 2'f(x) dx; here we have implicitly
started indexing at zero. Another basis would yield a different matrix. In par-
ticular, if we take the Cholesky factorization G = RTR and define U = R,
then the polynomials

or, in matrix terms,

j
Li(x) = a'uy
=0

have the property that they form an orthonormal basis for the space P4 —
essentially, this is the observation that ) = AR™! has orthonormal columns.
The polynomials L; are important enough that they have a name, the nor-
malized Legendre polynomials; these polynomials play an important role in
approximation theory and the theory of Gaussian quadrature. In fact, there
is an explicit three-term recurrence for these polynomials which can be de-
rived without resort to the Gram matrix; and we shall see this conneciton
again when we talk later about Krylov subspace methods.

3.2 Weighting and re-weighting

What about a more prosaic case of re-weighting” For example, what if for
some problem we care not about the residual, but the relative residual with
components r;/b;? Then we seek to minimize

> (ri/b)? = | D7H(Az —b)|?

(]
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where D = diag(b). Or, we might decide that we want to minimize
¥

where the weights w; are chosen to downweight outliers. How would we
choose which equations count as outliers? A natural way to do this is to look
at the residuals from an earlier fitting; this gives us the iteratively reweighted
least squares (IRLS) algorithm.

4 Constrained case

Consider the weighted least squares problem

m
minimize E w;r?

=1

where w; is much larger than the others. If we let w; — oo while the others
are fixed, what happens? We essentially say that we care about enforcing the
first equation above all others, and in the limit we are solving the constrained
least squares problem

m
minimize g wir? st = 0.
=2

Unfortunately, if we actually try to compute this way, we are dancing on
dangerous ground; as w; goes to infinity, so does the condition number of
the least squares problem. But this is only an issue with the weighted for-
mulation; we can formulate the constrained problem in other ways that are
perfectly well-behaved.

In the remainder of this section, we address two ways of handling the
linearly constrained least squares problem

minimize ||Az — b||* s.t. CTx =d,

by either eliminating variables (the null-space method) or adding variables
(the method of Lagrange multipliers).
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4.1 Null space method

In the null space method, we write an explicit expression for the solutions to
CTx = d in the form 2 + Wz where 2? is a particular solution to CTa? = d
and W is a basis for the null space of CT. Perhaps the simplest particular
solution is 27 = (CT)'d, the solution with minimal norm; we can compute
both this particular solution and an orthogonormal null space basis quickly
using a full QR decomposition of C"

C= [Ql Qﬂ {}Sl] , 2P =QiRTd, W =Qs.

Note that
CTa? = (R{Q[)2" = d,

so this is indeed a particular solution. Having written an explicit parame-
terization for all solutions of the constraint equations, we can minimize the
least squares objective with respect to the reduced set of variables

minimize ||A(z? + Wz) — b||2 = |(AW)z — (b — AzP)|%.

This new least squares problem involves a smaller set of variables (which is
good); but in general, even if A is sparse, AW will not be. So it is appropriate
to have a few more methods in our arsenal.

4.2 Lagrange multipliers

An alternate method is the method of Lagrange multipliers. This is an alge-
braic technique for adding equations to enforce constraints.

One way to approach the Lagrange multiplier method is to look at the
equations for a constrained minimum. In order not to have a downhill di-
rection, we require that the directional derivatives be zero in any direction
consistent with the constraint; that is, we require Cx = d and

dxT ATr = 0 when CTéx = 0.

The constraint says that admissible dx are orthogonal to the columns of ('
the objective tells us the admissible dx should be orthogonal to the residual.
So we need that A”r should lie in the column span of C; that is,

ATr = —CA
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for some \, and C'r = d. Putting this together, we have the KK'T equations
ATA C| [z] _ [ATb
CT 0[N | d|°
These bordered normal equations are not the end point for constrained
least squares with Lagrange multipliers, any more than the normal equations
are the end point for unconstrained least squares. Rather, we can use this as
a starting point for clever manipulations involving our favorite factorizations

(QR and SVD) that reduce the bordered system to a more computationally
convenient form.
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