Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-30

1 Logistics
1. HW 3 has minor edits to problem 3.

2. Per your request, we will move future homeworks (and the midterm)
to have Monday due dates.

2 QR and Gram-Schmidt

We now turn to our first numerical method for computing the QR decom-
position: the Gram-Schmidt algorithm. This method is usually presented in
first linear algebra classes, but is rarely interpreted as a matrix factorization.
Rather, it is presented as a way of converting a basis for a space into an
orthonormal basis for the same space. If aq,ao,...,a, are column vectors,
the Gram-Schmidt algorithm is as follows: for each j =1,...,n

7j—1

aj =aj; — Z%’%Taj
=1

q; = a;/lall;-.

At the end of the iteration, we have that the g; vectors are all mutually
orthonormal and

span{al, ... ,aj} = Span{CIh <o 7%'}-

To see this as a matrix factorization, we rewrite the iteration as

rij = q;
j—1

aj = a; —Z(b’nj
i=1

rii = llall;

G = ;735

N

10

Bindel, Fall 2016 Matrix Computations (CS 6210)

Putting these equations together, we have that

J
aj = E 4T
1=1

or, in matrix form,

A=QR

where A and @) are the matrices with column vectors a; and g;, respectively.

Sadly, the Gram-Schmidt algorithm is not backward stable. The problem
occurs when a vector a; is nearly in the span of previous vectors, so that
cancellation rears its ugly head in the formation of a;. The classical Gram-
Schmidt (CGS) method that we have shown is particularly problematic; a
somewhat better alternative is the modified Gram-Schmidt method (MGS)
algorithm:

Q

% Overwrite A with Q via MGS, store R separately
R = zeros (n);

for j = 1:n

for i = 1:n-1

R(i,3) = Q(:,1)"*A(i,]);
A(:,3) = A(:,3) — Q(:,1)*R(1,3);
end
R(j,J) = norm(A(:,3));
A(:,3) = A(:,3) / R(I,I);
end

Though equivalent in exact arithmetic, the MGS algorithm has the advan-
tage that it computes dot products with the updated a; as we go along,
and these intermediate vectors have smaller norm than the original vector.
Sadly, this does not completely fix the matter: the computed g; vectors
can still drift away from being orthogonal to each other. One can explicitly
re-orthogonalize vectors that drift away from orthogonality, and this helps
further. In practice, though, we usually don’t bother: if backward stability
is required, we turn to other algorithms.

Despite its backward instability, the Gram-Schmidt algorithm forms a
very useful building block for iterative methods, and we will see it frequently
in later parts of the course.

1

Bindel, Fall 2016 Matrix Computations (CS 6210)

3 Householder transformations

The Gram-Schmidt orthogonalization procedure is not generally recommended
for numerical use. Suppose we write A = [a1...a,,] and Q = [q; . . . gm]. The
essential problem is that if r;; < ||a |2, then cancellation can destroy the
accuracy of the computed g;; and in particular, the computed ¢; may not
be particularly orthogonal to the previous ¢;. Actually, loss of orthogonality
can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem,
we need a different approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is
in terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (reflections) that can be used to similar effect. Reflection across the
plane orthogonal to a unit normal vector v can be expressed in matrix form
as

H=1-2uw.

Now suppose we are given a vector x and we want to find a reflection
that transforms z into a direction parallel to some unit vector y. The right
reflection is through a hyperplane that bisects the angle between z and y
(see Figure 1), which we can construct by taking the hyperplane normal to
x — ||z|ly. That is, letting u = x — ||z||y and v = u/||ul|, we have

(x + lzlly) (@2 + [la]2"y)
)1 + 22Tyl + [l=]*]y]|
=z — (v —|zlly)

= [l=lly.

(I 200")z =2—2

If we use y = +ey, we can get a reflection that zeros out all but the first
element of the vector x. So with appropriate choices of reflections, we can
take a matrix A and zero out all of the subdiagonal elements of the first
column.

Now think about applying a sequence of Householder transformations
to introduce subdiagonal zeros into A, just as we used a sequence of Gauss
transformations to introduce subdiagonal zeros in Gaussian elimination. This
leads us to the following algorithm to compute the QR decomposition:

function [Q,R] = hqgrl (A)

Bindel, Fall 2016 Matrix Computations (CS 6210)

z — [y

[y

Figure 1: Construction of a reflector to transform z into ||z|y, ||y|| = 1.

Compute the QR decomposition of an m-by—-n matrix A using
Householder transformations.

3
3

[
Q = eye(m); % Orthogonal transform so far
R % Transformed matrix so far

for j = 1:n
% —— Find H taurw+w’ to put zeros below R (7, 7)

= J-
normx = norm(R(j:end, j));
-sign(R(J,3));

S

ul = R(Jj,J) - s*normx;

W = R(j:end, j) /ul;

w(l) = 1;

tau = -s*ul/normx;

$ —— R := HR, Q := QH

R(j:end, :) = R(j:end, :)-(tauxw)*(w' *xR(j:end, :));
Q(:,j:end) = Q(:,Jj:end)-(Q(:, j:end) xw) * (tauxw)’;

end

Note that there are two valid choices of u; at each step; we make the choice
that avoids cancellation in the obvious version of the formula.

As with LU factorization, we can re-use the storage of A by recognizing
that the number of nontrivial parameters in the vector w at each step is the
same as the number of zeros produced by that transformation. This gives us
the following:

1

Bindel, Fall 2016

Matrix Computations (CS 6210)

function [A,tau] = hqgr2 (A)
Compute the QR decomposition
Householder transformations,
for the Q and R factors.

oo oo oo

= size (A);
zeros (n, 1) ;

[m, n]
tau =

for j = 1:n

% —— Find H = I-tauswx*w’
normx = norm(A(j:end, j));
s = —sign(A(J,3J));
ul = A(j,]J) - s+*normx;
W = A(j:end, j) /ul;
w(l) = 1;

A(j+l:end, j) = w(2:end);
A(J,J) = sS*normx; g
tau(j) = -s*ul/normx;

$ -— R := HR

A(j:end, j+l:end) =

of an m-by-n matrix A using

re—-using the storage of A

to put zeros below A(3F,7)

% Save trailing part of w
Diagonal element of R

A(j:end, j+l:end)-...

(tau(j)»w) » (w’ *A(j:end, j+1:end));

end

If we ever need Q or Q7 explicitly, we can always form it from the com-
pressed representation. We can also multiply by @ and Q7 implicitly:

function 0OX = applyQ (QR, tau, X)

[m,n] = size(QR);
oX = X;j
for j = n:-1:1
w = [1l; QR(j+1l:end, j)1;
QX (j:end, :)
end

function QTX =

applyQT (QR, tau, X)

= QX(j:end, :) - (tau(j) »w) *x (w' *xQ0X(Jj:end, :));

[m,n] = size (QR);
QTX = X;
for j = 1:n
w = [1l; QR(j+1l:end, j)];
QTX(j:end, :) = QTX(j:end, :)—(tau(j) *w)* (w' *xQTX(Jj:end, :));

end

Bindel, Fall 2016 Matrix Computations (CS 6210)

4 (Gilvens rotations

Householder reflections are one of the standard orthogonal transformations
used in numerical linear algebra. The other standard orthogonal transforma-
tion is a Givens rotation:

so if we choose

S = — CcC =

then the Givens rotation introduces a zero in the second column. More
generally, we can transform a vector in R™ into a vector parallel to e; by
a sequence of m — 1 Givens rotations, where the first rotation moves the
last element to zero, the second rotation moves the second-to-last element to
zero, and so forth.

For some applications, introducing zeros one by one is very attractive.
In some places, you may see this phrased as a contrast between algorithms
based on Householder reflections and those based on Givens rotations, but
this is not quite right. Small Householder reflections can be used to introduce
one zero at a time, too. Still, in the general usage, Givens rotations seem to
be the more popular choice for this sort of local introduction of zeros.

	Logistics
	QR and Gram-Schmidt
	Householder transformations
	Givens rotations

