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Notes for 2016-09-26

1 Cricket chirps: an example

Did you know that you can estimate the temperature by listening to the
rate of chirps? The data set in Table 1. represents measurements of the
number of chirps (over 15 seconds) of a striped ground cricket at different
temperatures measured in degrees Farenheit. A plot (Figure 1) shows that
the two are roughly correlated: the higher the temperature, the faster the
crickets chirp. We can quantify this by attempting to fit a linear model

temperature = « - chirps 4+ beta + ¢

where € is an error term. To solve this problem by linear regression, we
minimize the Euclidean norm of the residual

r=b— Az
where

b; = temperature in experiment ¢
A;1 = chirps in experiment

-

MATLAB and Octave are capable of solving least squares problems using
the backslash operator; that is, if chirps and temp are column vectors in
MATLAB, we can solve this regression problem as

A = [chirps, ones(ndata,l)];

x = A\temp;
The algorithms underlying that backslash operation will make up most of
the next lecture.

In more complex examples, we want to fit a model involving more than
two variables. This still leads to a linear least squares problem, but one in
which A may have more than one or two columns. As we will see later in
the semester, we also use linear least squares problems as a building block
for more complex fitting procedures, including fitting nonlinear models and
models with more complicated objective functions.

'Data set originally attributed to http://mste.illinois.edu


http://mste.illinois.edu
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Figure 1: Cricket chirps vs. temperature and a model fit via linear regression.

Chirp | 20 16 20 18 17 16 15 17 15 16 15 17 16 17 14
Temp |89 72 93 8 81 75 70 82 69 83 80 83 81 84 76

Table 1: Cricket data: Chirp count over a 15 second period vs. temperature
in degrees Farenheit.
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Figure 2: Picture of a linear least squares problem. The vector Ax is the clos-
est vector in R(A) to a target vector b in the Euclidean norm. Consequently,
the residual r = b — Ax is normal (orthogonal) to R(A).

2 The least squares problem
The ordinary linear least squares problem, simply stated, is
minimize, || Az — b||3

where A € R™*" with m > n. Unless otherwise stated, we will assume that
undecorated norms refer to the two-norm for this part of the course.

2.1 The normal equations

The quantity r = Az — b is the least squares residual; unlike in the case of
linear systems, this residual is not generally zero at the exact minimizer. We
may write ||7]|? as a quadratic function of z,

|r||* = 27 AT Az — 22T ATb + bTb,
and taking variations with respect to x gives
5(||7]|?) = 2627 (AT Ax — ATb) = 2527 AT

Thus, at a minimizer, we require A”r = 0. Geometrically, this says that at
the minimizer, r is orthogonal to (normal to) any vector in the range space
of A (see Figure 2); hence, we call this the normal equations.
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2.2 The Moore-Penrose pseudoinverse

If A is full rank, then AT A is symmetric and positive definite, and we have
that
= (ATA)TTATh = ATp

is a linear function of the right hand side b. We call A" the Moore-Penrose
pseudoinverse of A. It is a pseudoinverse because A'A = I; this implies as
well that P = AA' is a projector (i.e. P2 = P). For the purposes of this
class, we will call this “the pseudoinverse,” but though the Moore-Penrose
pseudoinverse is the most common and well-known, it is useful to know that
it is not the only pseudoinverse out there — the Drazin pseudoinverse is a
good alternate example.

3 Why least squares?

Why is the ordinary least squares problem interesting? There are at least
three natural responses.

1. Simplicity: The least squares problem is one of the simplest formu-
lations around for fitting linear models. The quadratic loss model is
easy to work with analytically; it is smooth; and it leads to a problem
whose solution is linear in the observation data.

2. Statistics: The least squares problem is the optimal approach to pa-
rameter estimation among linear unbiased estimators, assuming inde-
pendent Gaussian noise. The least squares problem is also the maxi-
mum likelihood estimator under these same hypotheses.

3. It’s a building block: Linear least squares are not the right formu-
lation for all regression problems — for example, they tend to lack ro-
bustness in the face of heavy-tailed, non-Gaussian random errors. But
even for these cases, ordinary least squares is a useful building block.
Because least squares problems are linear in the observation vector,
they are amenable to direct attack by linear algebra methods in a way
that other estimation methods are not. The tools we have available
for more complex fitting boil down to linear algebra subproblems at
the end of the day, so it is useful to learn how to work effectively with
linear least squares.
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4 Least squares and statistical models

Counsider the model .

Yi = Z CiTij 1 €
j=1
where the factors z;; for example j are known, and the observations y; are
assumed to be an (unknown) combination of the factor values plus a small
independent Gaussian noise term e; N (0,0?). In terms of a linear system, we
have
y=Xc+e.

A linear unbiased estimator for c is a linear combination of the observations
whose expected value is ¢; that is, we need a matrix M € R™ ™ such that

EMTy] = M"Xc=c.

That is, M should be a pseudo-inverse of X.

According to the Gauss-Markov theorem, the choice M = XT is optimal,
and the estimator ¢ = X'y is the best linear unbiased estimator (BLUE). That
is, it is the linear unbiased estimator of ¢ such that for any v € R”, u” ¢ has the
smallest variance possible. Alternately (and equivalently), Var(¢) = Var(¢)
for any linear unbiased estimator ¢. Here > refers to the partial ordering
among symmetric matrices: if A and B are symmetric matrices, then

A» B = (A- B) is positive semidefinite.

What if we have more interesting noise? For example, what if the noise
variables € are drawn from a multivariate Gaussian distribution with mean
zero and positive definite covariance matrix C'? In this case, it turns out that
if C = RTR is the Cholesky factorization, then

2=RT¢

has independent standard normal entries, and so we can apply the Gauss-
Markov theorem to the equation

RTy=RTXc+ R e
The solution é = (R~TX)TR=Ty can be also written as

¢ = argmin, | Xc — y[2
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where
Jull-y = " (C™ M.

This is a generalized least squares problem; the most common version is the
weighted least squares case where the noise is assumed to be independent,
but does not have the same variance for every equation.

5 A family of factorizations

5.1 Cholesky

If A is full rank, then AT A is symmetric and positive definite matrix, and we
can compute a Cholesky factorization of AT A:
A"A=R"R.
The solution to the least squares problem is then
v=(ATA)'ATh = RTIRTT AT,
or, in MATLAB world

R = chol (A’ xA, ’'upper’);
x = R\ (R"\ (A’ xb));

5.2 Economy QR

The Cholesky factor R appears in a different setting as well. Let us write
A = QR where Q = AR™!; then

Q"Q=RTATAR ' =R"R'RR' = 1.

That is, ) is a matrix with orthonormal columns. This “economy QR fac-
torization” can be computed in several different ways, including one that you
have seen before in a different guise (the Gram-Schmidt process). MATLAB
provides a numerically stable method to compute the QR factorization via

[Q,R] = qr<Al 0);
and we can use the QR factorization directly to solve the least squares prob-
lem without forming AT A by

[Q,R] = gr(A,0);
x = R\ (Q’ xb);
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5.3 Full QR
There is an alternate “full” QR decomposition where we write
nxn Rl mxn
A:QR,WhereQ:[Ql QQ}GR ,R:{O]GR )

To see how this connects to the least squares problem, recall that the Eu-
clidean norm is invariant under orthogonal transformations, so

T
e =i = | o] - |«

We can set ||QTv — Ryz||? to zero by setting * = R;*QTb; the result is
Il = 1 QZbII*.

2
= Q16 — Ryz|* + [|Q20]*.

54 SVD

The full QR decomposition is useful because orthogonal transformations do
not change lengths. Hence, the QR factorization lets us change to a coordi-
nate system where the problem is simple without changing the problem in
any fundamental way. The same is true of the SVD, which we write as

0
= U, sVt Economy SVD.

A= (U U] ﬂ vt Full SVD

As with the QR factorization, we can apply an orthogonal transformation
involving the factor U that makes the least squares residual norm simple:

Ulb vt
|07 = H [UlTb} - [ : } H = U — SVTal? + |UF b,
2

and we can minimize by setting z = VXU



	Cricket chirps: an example
	The least squares problem
	The normal equations
	The Moore-Penrose pseudoinverse

	Why least squares?
	Least squares and statistical models
	A family of factorizations
	Cholesky
	Economy QR
	Full QR
	SVD


