Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-23

1 Sparse direct methods

Suppose A is a sparse matrix, and PA = LU. Will L and U also be sparse?
The answer depends in a somewhat complicated way on the structure of
the graph associated with the matrix A, the pivot order, and the order in
which variables are eliminated. Except in very special circumstances, there
will generally be more nonzeros in L and U than there are in A; these extra
nonzeros are referred to as fill. There are two standard ideas for minimizing

fill:

1. Apply a fill-reducing ordering to the variables; that is, use a factoriza-
tion

PAQ = LU,

where () is a column permutation chosen to approximately minimize
the fill in L and U, and P is the row permutation used for stability.

The problem of finding an elimination order that minimizes fill is NP-
hard, so it is hard to say that any ordering strategy is really optimal.
But there is canned software for some heuristic orderings that tend to
work well in practice. From a practical perspective, then, the important
thing is to remember that a fill-reducing elimination order tends to be
critical to using sparse Gaussian elimination in practice.

2. Relax the standard partial pivoting condition, choosing the row permu-
tation P to balance the desire for numerical stability against the desire
to minimize fill.

For the rest of this lecture, we will consider the simplified case of struc-
turally symmetric matrices and factorization without pivoting (which you
know from last week’s guest lectures is stable for diagonally dominany sys-
tems and positive definite systems).
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2 Sparse matrices, graphs, and tree elimina-
tion
Consider the following illustrative example of how factoring a sparse matrix

can lead to more or less dense factors depending on the order of elimination.
Putting in X to indicate a nonzero element, we have

X X X X X X X X X X X
X X X X X X X X
X X = | X X X X X X
X X X X X X X X
X X X X X X X X

That is, L and U have many more nonzeros than A. These nonzero locations
that appear in L and U and not in A are called fill-in. On the other hand,
if we cyclically permute the rows and columns of A, we have

X X X X X
X X X X X

X X | = X X X

X X X X X

X X X X X X X X X X X

That is, the factorization of PAPT has no fill-in.

A sparse matrix A can be viewed as an adjacency matrices for an associ-
ated graphs: make one node for each row, and connect node i to node j if
A;; # 0. The graphs for the two “arrow” matrices above are:

These graphs of both our example matrices are trees, and they differ only
in how the nodes are labeled. In the original matrix, the root node is assigned
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the first label; in the second matrix, the root node is labeled after all the
children. Clearly, the latter label order is superior for Gaussian elimination.
This turns out to be a general fact: if the graph for a (structurally symmetric)
sparse matrix S is a tree, and if the labels are ordered so that each node
appears after any children it may have, then there is no fill-in: that is, L and
U have nonzeros only where S has nonzeros.

Why should we have no fill when factoring a matrix for a tree ordered
from the leaves up? To answer this, we think about what happens in the
first step of Gaussian elimination. Our original matrix has the form

o-f 2]
v S
The first row of U is identical to the first row of S, and the first column of L
has the same nonzero structure as the first column of A, so we are fine there.
The only question is about the nonzero structure of the Schur complement
Sae — vw? /.. Note that the update vw? /o has nonzeros only where v; and
w; are both nonzero — that is, only when nodes ¢ and j are both connected
to node 1. But node 1 is a leaf node; the only thing it connects to is its
parent! So if p is the index of the parent of node 1 in the tree, then we only
change the (p,p) entry of the trailing submatrix during the update — and
we assume that entry is already nonzero. Thus, the graph associated with

the Schur complement is the same as the graph of the original matrix, but
with one leaf trimmed off.

3 Nested dissection

Tree-structured matrices are marvelous because we can do everything in O(n)
time: we process the tree from the leaves to the root in order to compute
L and U, then recurse from the root to the leaves in order to do back sub-
stitution with U, and then go back from the leaves to the root in order to
do forward substitution with L. Sadly, many of the graphs we encounter in
practice do not look like trees. However, we can often profitably think of
clustering nodes so that we get a block structure associated with a tree.

For illustrative purposes, let us consider Gaussian elimination on a matrix
whose graph is a regular n x n mesh. Such a matrix might arise, for example,
if we were solving Poisson’s equation using a standard five-point stencil to
discretize the Laplacian operator. We then think of cutting the mesh in half
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by removing a set of separator nodes, cutting the halves in half, and so forth.
This yields a block structure of a tree consisting of a root (the separator
nodes) and two children (the blocks on either side of the separator). We can
now dissect each of the sub-blocks with a smaller separator, and continue on
in this fashion until we have cut the mesh into blocks containing only a few
nodes each. Figure 1 illustrates the first two steps in this process of nested
dissection.

We can get a lower bound on the cost of the factorization by figuring out
the cost of factoring the Schur complement associated with G, C, F, etc. Af-
ter we eliminate everything except the nodes associated with GG, we pay about
2n3 /3 flops to factor the remaining (dense) n-by-n Schur complement matrix
G. Similarly, we pay about 2(n/2)3/3 time to factor the dense (n/2)-by-
(n/2) complements associated with the separators C' and F'. Eliminating all
four separators then costs a total of &~ 10n3/12 flops. Now, think of applying
nested dissection to blocks A, B, D, and E; eliminating the Shur comple-
ments associated with separators inside each of these blocks will take about
5(n/2)3 /6 flops; all four together cost a total of 4(5(n/2)%/6) = (1/2)(5n3/6)
flops to factor. If we keep recursing, we find that the cost of factoring Schur
complements associated with all the separators looks like

9 4 1 1 5 5
- I+-+—-+...) = 5n".
6n<—|—2+4+ > 3n

It turns out that forming each Schur complement is asymptotically not more
expensive than eliminating it, so that the overall cost of doing nested dissec-
tion on an n x n mesh with N = n? unknown is also O(n®) = O(N'9). Tt
also turns out that the fill-in is O(N log N)*.

Now think about doing the same thing with a three-dimensional mesh.
In this case, the top-level separators for an n x n x n mesh with N = n?
unknowns would involve n? unknowns, and we would take O(n%) = O(N?)
time to do the elimination, and O(N*/3) fill. This relatively poor scaling
explains why sparse direct methods are attractive for solving 2D PDEs, but
are less popular for 3D problems.

! The explanation of why is not so hard, at least for regular 2D meshes, but it requires
more drawing than I feel like at the moment. The paper “Nested Dissection of a Regular
Finite Element Mesh” by Alan George (SIAM J. Numer. Anal. 10(2), April 1973) gives a
fairly readable explanation for the curious.
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Figure 1: Nested dissection on a square mesh. We first cut the graph in half
with the red separator GG, then further dissect the halves with the blue sepa-
rators C' and F'. Nodes in A, B, D, and F are only connected through these
separator nodes, which is reflected in the sparsity pattern of the adjacency
matrix S when it is ordered so that separators appear after the things they
separate.
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