
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-19

1 Logistics

1. There is a correction to problem 4 — you need both a solveA and a
multA routine as arguments to the function.
Update: Actually, the original prompt was fine — you only need
solveA. See the Piazza post as well!

2 The slippery inverse

The concept of the inverse of a matrix is generally more useful in theory
than in numerical practice. We work with the inverse implicitly all the time
through solving linear systems via LU; but we rarely form it explicitly, unless
the inverse has some special structure we want to study or to use.

If we did want to form A−1 explicitly, the usual approach is to com-
pute PA = LU , then use that factorization to solve the systems Axk = ek,
where ek is the kth column of the identity matrix and xk is thus the kth
column of the identity matrix. As discussed last time, forming the LU fac-
torization takes n3/3 multiply-adds (2n3/3 flops), and a pair of triangular
solves takes n2 multiply-add operations. Therefore, computing the inverse
explicitly via an LU factorization takes about n3 multiply-add operations,
or roughly three times as much arithmetic as the original LU factorization.
Furthermore, multiplying by an explicit inverse is almost exactly the same
amount of arithmetic work as a pair of triangular solves. So computing and
using an explicit inverse is, on balance, more expensive than simply solving
linear systems using the LU factorization.

To make matters worse, multiplying by the explicit inverse of a matrix is
not a backward stable algorithm. Even if we could compute A−1 essentially
exactly, only committing rounding errors when storing the entries and when
performing matrix-vector multiplication, we would find fl(A−1b) = (A−1 +
F )b, where |F | ≤ nεmach|A−1|. But this corresponds to to a backward error
of roughly −AFA, which is potentially much larger than ‖A‖.

In summary: you should get used to the idea that any time you see an
inverse in the description of a numerical method, it is probably shorthand for
“solve a linear system here.” Except in special circumstances, forming and



Bindel, Fall 2016 Matrix Computations (CS 6210)

multiplying by an explicit inverse is both slower and less numerically stable
than solving a linear system by Gaussian elimination.

3 Iterative refinement revisited

At the end of last lecture, we discussed iterative refinement:

xk+1 = xk + Â−1(b− Axk).

The fixed point for this iteration is x = A−1b, and we can write a simple
recurrence for the error ek+1 = xk − x:

ek+1 = Â−1Eek

where E = Â − A. Therefore, if ‖Â−1E‖ < 1, then iterative refinement
converges — in exact arithmetic.

In floating point arithmetic, we actually compute something like

xk+1 = xk + Â−1k (b− Axk + δk) + µk,

where Âk = A + Ek accounts for the backward error Ek in the approximate
solve, δk is an error associated with computing the residual, and µk is an
error associated with the update. This gives us the error recurrence

ek+1 = Â−1k Ekek + Â−1δk + µk

If ‖δk‖ < α, ‖µk‖ < β, and ‖A−1Ek‖ < γ < 1 for all k, then we can show
that

‖xk − x‖ ≤ γk‖x0 − x‖+
α‖A−1‖+ β

1− γ
.

If we evaluate the residual in the obvious way, we typically have

α ≤ c1εmach‖A‖‖x‖,
β ≤ c2εmach‖x‖,

for some modest c1 and c2; and for large enough k, we end up with

‖xk − x‖
‖x‖

≤ C1εmachκ(A) + C2εmach.

That is, iterative refinement leads to a relative error not too much greater
than we would expect due to a small relative perturbation to A; and we can
show that in this case the result is backward stable. And if we use mixed
precision to evaluate the residual accurately enough relative to κ(A) (i.e.
ακ(A) . β) we can actually achieve a small forward error.



Bindel, Fall 2016 Matrix Computations (CS 6210)

4 Condition estimation

Suppose now that we want to compute κ1(A) (or κ∞(A) = κ1(A
T )). The

most obvious approach would be to compute A−1, and then to evaluate
‖A−1‖1 and ‖A‖1. But the computation of A−1 involves solving n linear
systems for a total cost of O(n3) — the same order of magnitude as the
initial factorization. Error estimates that cost too much typically don’t get
used, so we want a different approach to estimating κ1(A), one that does not
cost so much. The only piece that is expensive is the evaluation of ‖A−1‖1,
so we will focus on this.

Note that ‖A−1x‖1 is a convex function of x, and that ‖x‖1 ≤ 1 is a
convex set. So finding

‖A−1‖1 = max
‖x‖1≤1

‖A−1x‖1

is a convex optimization problem. Also, note that ‖ · ‖1 is differentiable
almost everywhere: if all the components of y are nonzero, then

ξTy = ‖y‖1, for ξ = sign(y);

and if δy is small enough so that all the components of y+ δy have the same
sign as the corresponding components of y, then

ξT (y + δy) = ‖y + δy‖1

More generally, we have

ξTu ≤ ‖ξ‖∞‖u‖1 = ‖u‖1,

i.e. even when δy is big enough so that the linear approximation to ‖y+δy‖1
no longer holds, we at least have a lower bound.

Since y = A−1x, we actually have that

|ξTA−1(x+ δx)| ≤ ‖A−1(x+ δx)‖,

with equality when δx is sufficiently small (assuming y has no zero compo-
nents). This suggests that we move from an initial guess x to a new guess
xnew by maximizing

|ξTA−1xnew|
over ‖xnew‖ ≤ 1. This actually yields xnew = ej, where j is chosen so that
the jth component of zT = ξTA−1 has the greatest magnitude.

Putting everything together, we have the following algorithm



Bindel, Fall 2016 Matrix Computations (CS 6210)

1 % Hager’s algorithm to estimate norm(Aˆ{-1},1)
2 % We assume solveA and solveAT are O(nˆ2) solution algorithms
3 % for linear systems involving A or A’ (e.g. via LU)
4

5 x = ones(n,1)/n; % Initial guess
6 while true
7

8 y = solveA(x); % Evaluate y = Aˆ{-1} x
9 xi = sign(y); % and z = Aˆ{-T} sign(y), the

10 z = solveAT(xi); % (sub)gradient of x -> \|Aˆ{-1} x\|_1.
11

12 % Find the largest magnitude component of z
13 [znorm, j] = max(abs(z));
14

15 % znorm = |z_j| is our lower bound on |Aˆ{-1} e_j|.
16 % If this lower bound is no better than where we are now, quit
17 if znorm <= norm(y,1)
18 invA_normest = norm(y,1);
19 break;
20 end
21

22 % Update x to e_j and repeat
23 x = zeros(n,1); x(j) = 1;
24

25 end

This method is not infallible, but it usually gives estimates that are the
right order of magnitude. There are various alternatives, refinements, and
extensions to Hager’s method, but they generally have the same flavor of
probing A−1 through repeated solves with A and AT .

5 Scaling

Suppose we wish to solve Ax = b where A is ill-conditioned. Sometimes, the
ill-conditioning is artificial because we made a poor choice of units, and it
appears to be better conditioned if we write

D1AD2y = D1b,

where D1 and D2 are diagonal scaling matrices. If the original problem was
poorly scaled, we will likely find κ(D1AD2)� κ(A), which may be great for
Gaussian elimination. But by scaling the matrix, we are really changing the



Bindel, Fall 2016 Matrix Computations (CS 6210)

norms that we use to measure errors — and that may not be the right thing
to do.

For physical problems, a good rule of thumb is to non-dimensionalize
before computing. The non-dimensionalization will usually reveal a good
scaling that (one hopes) simultaneously is appropriate for measuring errors
and does not lead to artificially inflated condition numbers.

6 Symmetric matrices

6.1 Quadratic forms

A matrix A is symmetric if A = AT . For each symmetric matrix A, there is an
associated quadratic form xTAx. Even if you forgot them from our lightning
review of linear algebra, you are likely familiar with quadratic forms from a
multivariate calculus class, where they appear in the context of the second
derivative test. One expands

F (x+ u) = F (x) + F ′(x)u+
1

2
uTH(x)u+O(‖u‖3),

and notes that at a stationary point where F ′(x) = 0, the dominant term
is the quadratic term. When H is positive definite or negative definite, x is
a strong local minimum or maximum, respectively. When H is indefinite,
with both negative and positive eigenvalues, x is a saddle point. When H is
semi-definite, one has to take more terms in the Taylor series to determine
whether the point is a local extremum.

If B is a nonsingular matrix, then we can write x = By and xTAx =
yT (BTAB)y. So an “uphill” direction for A corresponds to an “uphill” di-
rection for BTAB; and similarly with downhill directions. More generally, A
and BTAB have the same inertia, where the inertia of a symmetric A is the
triple

(# pos eigenvalues,# zero eigenvalues,# neg eigenvalues).

Now suppose that A = LU , where L is unit lower triangular and U
is upper triangular. If we let D be the diagonal part of U , we can write
A = LDMT , where L and M are both unit lower triangular matrices. Noting
that AT = (LDMT )T = MDLT = M(LD)T and that the LU factorization



Bindel, Fall 2016 Matrix Computations (CS 6210)

of a matrix is unique, we find M = L and LD = DMT = U . Note that D
has the same inertia as A.

The advantage of the LDLT factorization over the LU factorization is
that we need only compute and store one triangular factor, and so LDLT

factorization costs about half the flops and storage of LU factorization. We
have the same stability issues for LDLT factorization that we have for ordi-
nary LU factorization, so in general we might compute

PAP T = LDLT ,

where the details of various pivoting schemes are described in the book.

6.2 Positive definite matrices

A symmetric matrix is positive definite if xTAx > 0 for all nonzero x. If A
is symmetric and positive definite, then A = LDLT where D has all positive
elements (because A and D have the same inertia). Thus, we can write
A = (LD1/2)(LD1/2)T = L̂L̂T . The matrix L̂ is a Cholesky factor of A.

There are several useful properties of SPD matrices that we will use from
time to time:

1. The inverse of an SPD matrix is SPD.

Proof: If xTAx > 0 for all x 6= 0, then we cannot have Ax = 0 for
nonzero x. So A is necessarily nonsingular. Moreover,

xTA−1x = (A−1x)TA(A−1x)

must be positive for nonzero x by positive-definiteness of A. Therefore,
A−1 is SPD.

2. Any minor of an SPD matrix is SPD.

Proof: Without loss of generality, let M = A11. Then for any appro-
priately sized x,

xTMx =

[
x
0

]T
A

[
x
0

]
> 0

for x 6= 0. Therefore, M is positive definite.



Bindel, Fall 2016 Matrix Computations (CS 6210)

3. Any Schur complement of an SPD matrix is SPD

Proof: A Schur complement in A is the inverse of a minor of an in-
verse of A. By the two arguments above, this implies that any Schur
complement of an SPD matrix is SPD.

4. If M is a minor of A, κ2(M) ≤ κ2(A).

Proof: The largest and smallest singular values of an SPD matrix are
the same as the largest and smallest eigenvalues; they can be written
as

σ1(A) = max
‖x‖2=1

xTAx, σmin(A) = min
‖x‖2=1

xTAx.

Without loss of generality, let M = A11. Then

σ1(M) = max
‖x‖2=1

xTMx = max
‖x‖2=1

[
x
0

]T
A

[
x
0

]
≤ max
‖z‖2=1

zTAz = σ1(A)

and similarly σmin(M) ≥ σmin(A). The condition numbers are therefore

κ2(M) =
σ1(M)

σmin(M)
≤ σ1(A)

σmin(A)
= κ2(A).

5. If S is a Schur complement in A, κ2(S) ≤ κ2(A).

Proof: This is left as an exercise.

7 Cholesky

The algorithm to compute the Cholesky factor of an SPD matrix is close to
the Gaussian elimination algorithm. In the first step, we would write[

a11 aT21
a21 A22

]
=

[
l11 0
l21 L22

] [
l11 lT21
0 LT

22

]
,

or

a11 = l211
a21 = l21l11

A22 = L22L
T
22 + l21l

T
21.



Bindel, Fall 2016 Matrix Computations (CS 6210)

The first two equations allow us to compute the first column of L; the last
equation tells us that the rest of L is the Cholesky factor of a Schur com-
plement, L22L

T
22 = A22 − l21l

T
21. Continuing in this fashion, we have the

algorithm

1 for j = 1:n
2

3 % Compute the jth column of L
4 A(j,j) = sqrt(A(j,j));
5 A(j+1:end,j) = A(j+1:end,j)/A(j,j);
6

7 % Update trailing submatrix
8 A(j+1:end,j+1:end) = A(j+1:end,j+1:end) - ...
9 A(j+1:end,j)*A(j+1:end,j)’;

10 end
11

12 % Lower triangle was overwritten by L
13 L = tril(A);

Like the nearly-identical Gaussian elimination algorithm, we can rewrite the
Cholesky algorithm in block form for better cache use. Unlike Gaussian
elimination, we do just fine using Cholesky without pivoting1.

1Pivoting can still be useful for near-singular matrices, but unpivoted Cholesky is back-
ward stable


	Logistics
	The slippery inverse
	Iterative refinement revisited
	Condition estimation
	Scaling
	Symmetric matrices
	Quadratic forms
	Positive definite matrices

	Cholesky

