
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-12

1 Logistics

• HW 1 is due tonight by midnight via CMS. Let me know if you do not
have CMS access.

• HW 2 will be posted some time this evening (I hope).

2 Introduction

For the next few lectures, we will explore methods to solve linear systems.
Our main tool will be the factorization PA = LU , where P is a permutation,
L is a unit lower triangular matrix, and U is an upper triangular matrix.
As we will see, the Gaussian elimination algorithm learned in a first linear
algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we can come up with other organizations for
the computation.

We emphasize a few points up front:

• Some matrices are singular. Errors in this part of the class often involve
attempting to invert a matrix that has no inverse. A matrix does not
have to be invertible to admit an LU factorization. We will also see
more subtle problems from almost singular matrices.

• Some matrices are rectangular. In this part of the class, we will deal
almost exclusively with square matrices; if a rectangular matrix shows
up, we will try to be explicit about dimensions. That said, LU fac-
torization makes sense for rectangular matrices as well as for square
matrices — and it is sometimes useful.

• inv is evil. The inv command is one of the most abused commands
in Matlab. The Matlab backslash operator is the preferred way to
solve a linear system absent other information:

1 x = A \ b; % Good
2 x = inv(A) * b; % Evil

Homework solutions that feature inappropriate explicit inv commands
will lose points.

Bindel, Fall 2016 Matrix Computations (CS 6210)

• LU is not for linear solves alone. One can solve a variety of other
interesting problems with an LU factorization.

• LU is not the only way to solve systems. Gaussian elimination and
variants will be our default solver, but there are other solver methods
that are appropriate for problems with more structure. We will touch
on other methods throughout the class.

3 Triangular solves

Suppose that we have computed a factorization PA = LU . How can we use
this to solve a linear system of the form Ax = b? Permuting the rows of A
and b, we have

PAx = LUx = Pb,

and therefore
x = U−1L−1Pb.

So we can reduce the problem of finding x to two simpler problems:

1. Solve Ly = Pb

2. Solve Ux = y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower
triangular), and U is upper triangular, so we can solve linear systems with
L and U involving forward and backward substitution.

As a concrete example, suppose

L =

1 0 0
2 1 0
3 2 1

 , d =

1
1
3


To solve a linear system of the form Ly = d, we process each row in turn to
find the value of the corresponding entry of y:

1. Row 1: y1 = d1

2. Row 2: 2y1 + y2 = d2, or y2 = d2 − 2y1

3. Row 3: 3y1 + 2y2 + y3 = d3, or y3 = d3 − 3y1 − 2y2

Bindel, Fall 2016 Matrix Computations (CS 6210)

More generally, the forward substitution algorithm for solving unit lower tri-
angular linear systems Ly = d looks like

1 y = d;
2 for i=2:n
3 y(i) = d(i)-L(1:i-1)*y(1:i-1)
4 end

Similarly, there is a backward substitution algorithm for solving upper trian-
gular linear systems Ux = d

1 x(n) = d(n)/U(n,n);
2 for i=n-1:-1:1
3 x(i) = (d(i)-U(i+1:n)*x(i+1:n))/U(i,i)
4 end

Each of these algorithms takes O(n2) time.

4 Triangular matrix graphs and groups

Before moving on from triangular matrices, it is worth pointing out two useful
structural facts.

4.1 Triangular matrices and DAGs

Triangular matrices are associated with directed acyclic graphs (DAGs), and
this is part of what makes them useful for solving linear systems: forward
and back-substitution are both instances of processing the graph according
to a topological ordering by variable dependencies.

In Matlab, a psychologically triangular matrix is a matrix whose rows
can be permuted to obtain a lower (or upper) triangular matrix. A Matlab
solve involving a psychologically triangular matrix is still O(n2), since Mat-
lab checks in advance for this structure. When the lu function in Matlab
is called without explicitly returning a permutation, the L matrix it returns
is psychologically lower triangular.

In principle, Matlab could use a topological sort to solve a matrix that
could be transformed to triangularity by row and column permutations in
O(n2) time. In practice, it does not!

Bindel, Fall 2016 Matrix Computations (CS 6210)

4.2 Triangular matrices and groups

The (square) unit lower triangular matrices (lower triangular matrices with
ones on the main diagonal) have several interesting properties:

• I is unit lower triangular

• Products of unit lower triangular matrices are unit lower triangular

• Every unit lower triangular matrix has a unit lower triangular inverse

That is, the unit lower triangular matrices form an algebraic group within
the set of square matrices. If you don’t know what an algebraic group is,
that is fine — but it is worth noting that the unit triangular matrices are
closed under inversion and multiplication.

The invertible lower triangular matrices are also an algebraic group, as
are the unit upper triangular matrices and the invertible upper triangular
matrices.

5 Gaussian elimination by example

Let’s start our discussion of LU factorization by working through these ideas
with a concrete example:

A =

1 4 7
2 5 8
3 6 10

 .
To eliminate the subdiagonal entries a21 and a31, we subtract twice the first
row from the second row, and thrice the first row from the third row:

A(1) =

1 4 7
2 5 8
3 6 10

−

0 · 1 0 · 4 0 · 7
2 · 1 2 · 4 2 · 7
3 · 1 3 · 4 3 · 7

 =

1 4 7
0 −3 −6
0 −6 −11

 .
That is, the step comes from a rank-1 update to the matrix:

A(1) = A−

0
2
3

 [1 4 7
]
.

Bindel, Fall 2016 Matrix Computations (CS 6210)

Another way to think of this step is as a linear transformation A(1) = M1A,
where the rows of M1 describe the multiples of rows of the original matrix
that go into rows of the updated matrix:

M1 =

 1 0 0
−2 1 0
−3 0 1

 = I −

0
2
3

 [1 0 0
]

= I − τ1e
T
1 .

Similarly, in the second step of the algorithm, we subtract twice the second
row from the third row:1 4 7

0 −3 −6
0 0 1

 =

1 0 0
0 1 0
0 −2 1

1 4 7
0 −3 −6
0 −6 −11

 =

I −
0

0
2

 [0 1 0
]A(1).

More compactly: U = (I − τ2e
T
2)A(1).

Putting everything together, we have computed

U = (I − τ2e
T
2)(I − τ1e

T
1)A.

Therefore,
A = (I − τ1e

T
1)−1(I − τ2e

T
2)−1U = LU.

Now, note that

(I − τ1e
T
1)(I + τ1e

T
1) = I − τ1e

T
1 + τ1e

T
1 − τ1e

T
1 τ1e

T
1 = I,

since eT1 τ1 (the first entry of τ1) is zero. Therefore,

(I − τ1e
T
1)−1 = (I + τ1e

T
1)

Similarly,
(I − τ2e

T
2)−1 = (I + τ2e

T
2)

Thus,
L = (I + τ1e

T
1)(I + τ2e

T
2).

Now, note that because τ2 is only nonzero in the third element, eT1 τ2 = 0;
thus,

L = (I + τ1e
T
1)(I + τ2e

T
2)

= (I + τ1e
T
1 + τ2e

T
2 + τ1(e

T
1 τ2)e

T
2

= I + τ1e
T
1 + τ2e

T
2

=

1 0 0
0 1 0
0 0 1

+

0 0 0
2 0 0
3 0 0

+

0 0 0
0 0 0
0 2 0

 =

1 0 0
2 1 0
3 2 1

 .

Bindel, Fall 2016 Matrix Computations (CS 6210)

The final factorization is

A =

1 4 7
2 5 8
3 6 10

 =

1 0 0
2 1 0
3 2 1

1 4 7
0 −3 −6
0 0 1

 = LU.

Note that the subdiagonal elements of L are easy to read off: for j > i,
lij is the multiple of row j that we subtract from row i during elimination.
This means that it is easy to read off the subdiagonal entries of L during the
elimination process.

6 Aside: Gauss transformations and shearing

In the previous section, we observed that we can reduce a matrix to upper
triangularity by repeated multiplication by Gauss transformations

I − τke
T
k

where τk is nonzero only in elements below the main diagonal. It is worth
thinking about what this means geometrically: a Gauss transformation is a
shear transformation affecting a particular coordinate direction. If we think
about the columns of a matrix A as representing the edges of a paralellipiped
in Rn, then Gaussian elimination can be interpreted as the process of applying
shear transformations to move the first vector into the x direction, the second
into the xy-plane, the third into the xyz space, and so forth. Because shear
transformations do not change volume, the transformed parallelipiped has the
same volume as the original one. But because of the axis alignment in the
transformed parallelipiped, we can compute the volume via the generalization
of the usual “base × height” computation.

Algebraically, what have we just observed? If A = LU where L is unit
lower triangular and U is upper triangular, then

det(A) = det(L) det(U) = det(U) =
n∏

k=1

ukk.

That is, we can use the LU factorization to compute determinants or volumes
as well as to solve linear systems. I prefer to start from the perspective of
volume-preserving shear transformations, though, as I consider this a very
natural explanation for why determinants have anything to do with volume.

Bindel, Fall 2016 Matrix Computations (CS 6210)

Indeed, I pretty much took the volume characterization of determinants as a
matter of faith rather than true understanding, up to the point where I really
understood the connection to various matrix factorizations. We will see this
connection again when we talk about QR factorization and least squares.

7 Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for LU fac-
torization. We will leave the issue of pivoting to a later discussion. We’ll
start with a purely loop-based implementation:

1 %
2 % Overwrites A with an upper triangular factor U, keeping track of
3 % multipliers in the matrix L.
4 %
5 function [L,A] = mylu(A)
6

7 n = length(A);
8 L = eye(n);
9 for j=1:n-1

10 for i=j+1:n
11

12 % Figure out multiple of row j to subtract from row i
13 L(i,j) = A(i,j)/A(j,j);
14

15 % Subtract off the appropriate multiple
16 A(i,j) = 0
17 for k=j+1:n
18 A(i,k) = A(i,k) - L(i,j)*A(j,k);
19 end
20 end
21 end

Note that we can write the two innermost loops more concisely by thinking
of them in terms of applying a Gauss transformation Mj = I − τje

T
j , where

τj is the vector of multipliers that appear when eliminating in column j:

1 %
2 % Overwrites A with an upper triangular factor U, keeping track of
3 % multipliers in the matrix L.
4 %
5 function [L,A] = mylu(A)
6

7 n = length(A);

Bindel, Fall 2016 Matrix Computations (CS 6210)

8 L = eye(n);
9 for j=1:n-1

10

11 % Form vector of multipliers
12 L(j+1:n,j) = A(j+1:n,j)/A(j,j);
13

14 % Apply Gauss transformation
15 A(j+1:n,j) = 0;
16 A(j+1:n,j+1:n) = A(j+1:n,j+1:n)-L(j+1:n,j)*A(j,j+1:n);
17

18 end

	Logistics
	Introduction
	Triangular solves
	Triangular matrix graphs and groups
	Triangular matrices and DAGs
	Triangular matrices and groups

	Gaussian elimination by example
	Aside: Gauss transformations and shearing
	Basic LU factorization

