N

Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-09

1 Finding and fixing floating point problems

Floating point arithmetic is not the same as real arithmetic. Even simple
properties like associativity or distributivity of addition and multiplication
only hold approximately. Thus, some computations that look fine in exact
arithmetic can produce bad answers in floating point. What follows is a (very
incomplete) list of some of the ways in which programmers can go awry with
careless floating point programming.

1.1 Cancellation

If £ =2(146;) and § = y(1+ J2) are floating point approximations to z and
y that are very close, then fl(Z — ¢) may be a poor approximation to z — y
due to cancellation. In some ways, the subtraction is blameless in this tail:
if x and y are close, then fl(z — §) = & — gy, and the subtraction causes no
additional rounding error. Rather, the problem is with the approximation
error already present in z and g.

The standard example of loss of accuracy revealed through cancellation
is in the computation of the smaller root of a quadratic using the quadratic

formula, e.g.
r=1—-+vV1-=z¢

for z small. Fortunately, some algebraic manipulation gives an equivalent
formula that does not suffer cancellation:

x:(l_m)(ig)zwjm'

1.2 Sensitive subproblems

We often solve problems by breaking them into simpler subproblems. Un-
fortunately, it is easy to produce badly-conditioned subproblems as steps to

solving a well-conditioned problem. As a simple (if contrived) example, try
running the following MATLAB code:

X = 2;
for k = 1:60, x = sqgrt(x); end

Bindel, Fall 2016 Matrix Computations (CS 6210)

for k = 1:60, x = x"2; end
disp (x) ;

In exact arithmetic, this should produce 2, but what does it produce in
floating point? In fact, the first loop produces a correctly rounded result, but
the second loop represents the function xQGO, which has a condition number
far greater than 10 — and so all accuracy is lost.

1.3 Unstable recurrences

One of my favorite examples of this problem is the recurrence relation for
computing the integrals
1
E, :/ et dx.
0

Integration by parts yields the recurrence

E0:1—1/€
E,=1—-nE,1, n>1.

This looks benign enough at first glance: no single step of this recurrence
causes the error to explode. But each step amplifies the error somewhat,
resulting in an exponential growth in error!.

1.4 Undetected underflow

In Bayesian statistics, one sometimes computes ratios of long products. These
products may underflow individually, even when the final ratio is not far from
one. In the best case, the products will grow so tiny that they underflow to
zero, and the user may notice an infinity or NaN in the final result. In the
worst case, the underflowed results will produce nonzero subnormal numbers
with unexpectedly poor relative accuracy, and the final result will be wildly
inaccurate with no warning except for the (often ignored) underflow flag.

IPart of the reason that I like this example is that one can run the recurrence backward
to get very good results, based on the estimate E,, ~ 1/(n + 1) for n large.

[

T W

w N

Bindel, Fall 2016 Matrix Computations (CS 6210)

1.5 Bad branches

A NaN result is often a blessing in disguise: if you see an unexpected NaNN,
at least you know something has gone wrong! But all comparisons involving
NaN are false, and so when a floating point result is used to compute a branch
condition and an unexpected NaN appears, the result can wreak havoc. As
an example, try out the following code in MATLAB.

x = 0/0;

if x < 0 then disp(’'x_is_negative’);

elseif x >= 0 then disp(’x_is_non-negative’);

else disp(‘'Uh...");

end

2 Sums and dots

We already described a couple of floating point examples that involve evalu-
ation of a fixed formula (e.g. computation of the roots of a quadratic). We
now turn to the analysis of some of the building blocks for linear algebraic
computations: sums and dot products.

2.1 Sums two ways

As an example of first-order error analysis, consider the following code to
compute a sum of the entries of a vector v:

s = 0;
for k = 1:n

s = s + v(k);
end

Let S, denote the computed sum at step k of the loop; then we have

S1 = U
Sk = (k-1 +ue)(L+0), k>1.

Running this forward gives

§2 = (Ul + ’UQ)(l + 52)
83 = ((v1 + v2)(1 + d2) + v3)(1 + d2)

Bindel, Fall 2016 Matrix Computations (CS 6210)

and so on. Using first-order analysis, we have

k k k
'§k ~ (Ul —|—’UQ) (]_ +Z(Sj) —|—Zvl <1+25]> s
j=2 =3 j=l

and the difference between §, and the exact partial sum is then

k
§k — S =~ E Sj(Sj.
Jj=2

Using ||v]|; as a uniform bound on all the partial sums, we have
|87 = sn| S (= 1)emacn |v]2-

An alternate analysis, which is a useful prelude to analyses to come in-
volves writing an error recurrence. Taking the difference between 5 and the
true partial sums s, we have

e1 =0

ek = Sk — Sk
= (8p—1 + o) (1 + 6) — (Sp—1 + k)
= ep—1 + (8r—1 + Vi)0%,

and S;_1 + vg = Sk + O(€macn), SO that
lex] < lex—1] + [sklemach + O(Emaen)-

Therefore,
‘€n| 5 (n - 1>€machH'U||1,

which is the same bound we had before.

2.2 Backward error analysis for sums

In the previous subsection, we showed an error analysis for partial sums
leading to the expression:

Sp =~ (v1 + v2) (1 +Z(5j) —I—Zvl (1 +25j>)
=2 1=3 j=l

Bindel, Fall 2016 Matrix Computations (CS 6210)

We then proceded to aggregate all the rounding error terms in order to
estimate the error overall. As an alternative to aggregating the roundoff, we
can also treat the rounding errors as perturbations to the input variables
(the entries of v); that is, we write the computed sum as

n
Sn =0
Jj=1

where
@j = Uj(l + 7”)7 where |7]J| SJ (n +1- j)emach‘

This gives us a backward error formulation of the rounding: we have re-cast
the role of rounding error in terms of a perturbation to the input vector v.
In terms of the 1-norm, we have the relative error bound

[0 = vlls < némacnl[v]l1;

or we can replace n with n—1 by being a little more careful. Either way, what
we have shown is that the summation algorithm is backward stable, i.e. we
can ascribe the roundoff to a (normwise) small relative error with a bound
of Cépacn where the constant C' depends on the size n like some low-degree
polynomial.

Once we have a bound on the backward error, we can bound the for-
ward error via a condition number. That is, suppose we write the true and
perturbed sums as

n
SIE Uj S:E ?)j.
Jj=1

We want to know the relative error in § via a normwise relative error bound
in ©, which we can write as

8 —sl _ [2m@ =)l _ o=l _ Jlolli o vl
|

5] s T ET I [

That is, ||v]|1/|s| is the condition number for the summation problem, and
our backward stability analysis implies

1=l _ vl
= N€mach-
||

5]

V)

Bindel, Fall 2016 Matrix Computations (CS 6210)

This is the general pattern we will see again in the future: our analysis con-
sists of a backward error computation that depends purely on the algorithm,
together with a condition number that depends purely on the problem. To-
gether, these give us forward error bounds.

2.3 Running error bounds for sums

In all the analysis of summation we have done so far, we ultimately simplified
our formulas by bounding some quantity in terms of ||v|[;. This is nice for
algebra, but we lose some precision in the process. An alternative is to
compute a running error bound, i.e. augment the original calculation with
something that keeps track of the error estimates. We have already seen that
the error in the computations looks like

‘§" — Sn = Zsj(sj + O(G?nach)7

j=2

and since s; and §; differ only by O(émacn) terms,

n
|0 = snl S Z 351 €mach + O(€mach);
j=2
We are not worried about doing a rounding error analysis of our rounding
error analysis — in general, we care more about order of magnitude for
rounding error anyhow — so the following routine does an adequate job of
computing an (approximate) upper bound on the error in the summation:

s = 0;

e = 0;
for k = 1:n

s = s + v(k);

e = e + abs(s) * eps;
end

2.4 Compensated summation

We conclude our discussion of rounding analysis for summation with a com-
ment on the compensated summation algorithm of Kahan, which is not amenable
to straightforward 1+ 0 analysis. The algorithm maintains the partial sums
not as a single variable s, but as an unevaluated sum of two variables s and
c:

w N

Bindel, Fall 2016 Matrix Computations (CS 6210)

s = 0;
c = 0;
for k = 1:n
y = v(i) - ¢;
t =s + y;
c = (t - s) —vy; % Key step
s = t;
end

Where the error bound for ordinary summation is (n—1)émacn ||v||1 + O (€2 ,a)

the error bound for compensated summation is 2€ye ||v]|1 + O(€2,,0,)- More-
over, compensated summation is exact for adding up to 2* terms that are
within about 2°~% of each other in magnitude.

Nor is Kahan’s algorithm the end of the story! Higham’s Accuracy and
Stability of Numerical Methods devotes an entire chapter to summation meth-
ods, and there continue to be papers written on the topic. For our purposes,

though, we will wrap up here with two observations:

e Our initial analysis in the 1 + ¢ model illustrates the general shape
these types of analyses take and how we can re-cast the effect of round-
ing errors as a “backward error” that perturbs the inputs to an exact
problem.

e The existence of algorithms like Kahan’s compensated summation method
should indicate that the backward-error-and-conditioning approach to
rounding analysis is hardly the end of the story. One could argue it is
hardly the beginning! But it is the approach we will be using for most
of the class.

2.5 Dot products

We conclude with one more example error analysis, this time involving a real
dot product computed by a loop of the form

dot = 0;
for k = 1:n

dot = dot + x(k)xy(k);
end

Unlike the simple summation we analyzed above, the dot product involves
two different sources of rounding errors: one from the summation, and one
from the product. As in the case of simple summations, it is convenient to

Bindel, Fall 2016 Matrix Computations (CS 6210)

re-cast this error in terms of perturbations to the input. We could do this
all in one go, but since we have already spent so much time on summation,
let us instead do it in two steps. Let vy = xpyi; in floating point, we get
Or = vg(14nk) where 1| < €macn- Further, we have already done a backward
error analysis of summation to show that the additional error in summation
can be cast onto the summands, i.e. the floating point result is), 9y where

f)k = @k(l + Z 5])(1 + 77k) + O(Grznach)

j=min(2,n)

= Uk‘(]' + ’7]@) + O(Efnach)

where

|fyk| = |7]k + Z 6]| S N€mach-

j=min(2,n)

Rewriting vy (1 4) as Zxyr where 2 = x1(1 4 %), we have that the com-
puted inner product y’z is equivalent to the exact inner product of y’2
where 7 is an elementwise relatively accurate (to within nepaen + O(€2,4,))
approximation to z.

A similar backward error analysis shows that computed matrix-matrix
products AB in general can be interpreted as AB where

|A — A| < pemacn| Al + O(erznach)

and p is the inner dimension of the product. Exactly what Ais depends not
only on the data, but also the loop order used in the multiply — since, as
we recall, the order of accumulation may vary from machine to machine de-
pending on what blocking is best suited to the cache! But the bound on the
backward error holds for all the common re-ordering? And this backward er-
ror characterization, together with the type of sensitivity analysis for matrix
multiplication that we have already discussed, gives us a uniform framework
for obtaining forward error bounds for matrix-matrix muliplication; and the
same type of analysis will continue to dominate our discussion of rounding
errors as we move on to more complicated matrix computations.

2For those of you who know about Strassen’s algorithm — it’s not backward stable,
alas.

Bindel, Fall 2016 Matrix Computations (CS 6210)

3

Problems to ponder

. How do we accurately evaluate v/1 + z — /1 — when z < 17

. How do we accurately evaluate In/z + 1 — In \/z when z > 17

. How do we accurately evaluate (1 — cos(x))/sin(z) when x < 17
. How would we compute cos(z) — 1 accurately when z < 17

. The Lamb-Oseen vortex is a solution to the 2D Navier-Stokes equation

that plays a key role in some methods for computational fluid dynamics.

It has the form
I —r?
Ug(T', t) = 2_71'7' (1 — exXp (Tyt))

How would one evaluate v(r,t) to high relative accuracy for all values
of r and t (barring overflow or underflow)?

. For = > 1, the equation = = cosh(y) can be solved as

yz—ln(x—@).

What happens when 2 = 103? Can we fix it?

. The difference equation

Tp+1 = 225£L‘k — O.5$k_1

with starting values

1 = Ty = —

1
3’ 12
has solution
417k
T = 3

Is this what you actually see if you compute? What goes wrong?

8. Considering the following two MATLAB fragments:

Bindel, Fall 2016 Matrix Computations (CS 6210)

w N

10.

Version l
= (exp(x)-1)/x;

oo

h

oo

Version 2
= exp (x);
(1-y) /log(y);

Hh

In exact arithmetic, the two fragments are equivalent. In floating point,
the first formulation is inaccurate for x < 1, while the second formu-
lation remains accurate. Why?

Running the recurrence E,, = 1 —nkE, 1 forward is an unstable way to
compute fol x"e* ! dr. However, we can get good results by running
the recurrence backward from the estimate E, ~ 1/(N + 1) starting at
large enough N. Explain why. How large must N be to compute Fsy
to near machine precision?

How might you accurately compute this function for |z| < 17

oo
g cos xﬂ

j=0

	Finding and fixing floating point problems
	Cancellation
	Sensitive subproblems
	Unstable recurrences
	Undetected underflow
	Bad branches

	Sums and dots
	Sums two ways
	Backward error analysis for sums
	Running error bounds for sums
	Compensated summation
	Dot products

	Problems to ponder

