Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-07

1 Logistics

1. We are still at 50. If you are still waiting and are not interested in
knowing if a slot frees up, let me know.

2. There is a correction to HW 1, problem 4; the condition [|[M] < 1
should have been || M| < 1.

2 Binary floating point

Binary floating point arithmetic is essentially scientific notation. Where in
decimal scientific notation we write

1
3= 3.333...x 107",

in floating point, we write
(1)2
(11)2

Because computers are finite, however, we can only keep a finite number of

bits after the binary point. We can also only keep a finite number of bits for
the exponent field. These facts turn out to have interesting implications.

= (1.010101...)y x 272

2.1 Normalized representations

In general, a normal floating point number has the form
(—1)8 X (1b1[)2 . bp)g X 2E,

where s € {0,1} is the sign bit, E is the ezponent, and (1.by...by,)s is the
significand. The normalized representations are called normalized because
they start with a one before the binary point. Because this is always the
case, we do not need to store that digit explicitly; this gives us a “free” extra
digit.

In the 64-bit double precision format, p = 52 bits are used to store the
significand, 11 bits are used for the exponent, and one bit is used for the sign.

Bindel, Fall 2016 Matrix Computations (CS 6210)

The valid exponent range for normal double precision floating point numbers
is —1023 < E < 1024; the number £ is encoded as an unsigned binary
integer Eyis which is implicitly shifted by 1023 (E' = FEyis — 1023). This
leaves two exponent encodings left over for special purpose, one associated
with Epis = 0 (all bits zero), and one associated with all bits set; we return
to these in a moment.

In the 32-bit single-percision format, p = 23 bits are used to store the
significand, 8 bits are used for the exponent, and one bit is used for the sign.
The valid exponent range for normal is —127 < E < 128; as in the double
precision format, the representation is based on an unsigned integer and an
implicit shift, and two bit patterns are left free for other uses.

We will call the distance between 1.0 and the next largest floating point
number one either an ulp (unit in the last place) or, more frequently, machine
epsilon (denoted €yae). This is 2792 & 2 x 10719 for double precision and
272 ~ 1077 for single precision. This is the definition used in most numerical
analysis texts, and in MATLAB and Octave, but it is worth noting that in
a few places (e.g. in the C standard), call machine epsilon the quantity that
is half what we call machine epsilon.

2.2 Subnormal representations

When the exponent field consists of all zero bits, we have a subnormal rep-
resentation. In general, a subnormal floating point number has the form

<_1)s X (0.b1b2 .. bp)2 X 2_Ebias’

where Fy;.s is 1023 for double precision and 127 for single. Unlike the normal
numbers, the subnormal numbers are evenly spaced, and so the relative dif-
ferences between successive subnormals can be much larger than the relative
differences between successive normals.

Historically, there have been some floating point systems that lack subnor-
mal representations; and even today, some vendors encourage “flush to zero”
mode arithmetic in which all subnormal results are automatically rounded to
zero. But there are some distinct advantage to these numbers. For example,
the subnormals allow us to keep the equivalence between x—y = 0 and x = y;
without subnormals, this identity can fail to hold in floating point. Apart
from helping us ensure standard identities, subnormals let us represent num-
bers close to zero with reduced accuracy rather than going from full precision
to zero abruptly. This property is sometimes known as gradual underflow.

Bindel, Fall 2016 Matrix Computations (CS 6210)

The most important of the subnormal numbers is zero. In fact, we con-
sider zero so important that we have two representations: +0 and —0! These
representations behave the same in most regards, but the sign does play a
subtle role; for example, 1/ + 0 gives a representation for +o0o, while 1/ — 0
gives a representation for —oo. The default value of zero is +0; this is what
is returned, for example, by expressions such as 1.0 — 1.0.

2.3 Infinities and NalNs

A floating point representation in which the exponent bits are all set to
one and the signficand bits are all zero represents an infinity (positive or
negative).

When the exponent bits are all one and the significand bits are not all
zero, we have a NaN (Not a Number). A NaN is quiet or signaling depending
on the first bit of the significand; this distinguishes between the NaNs that
simply propagate through arithmetic and those that cause exceptions when
operated upon. The remaining significand bits can, in principle, encode
information about the details of how and where a NaN was generated. In
practice, these extra bits are typically ignored. Unlike infinities (which can
be thought of as a computer representation of part of the extended reals!),
NaN “lives outside” the extended real numbers.

Infinity and NaN values represent entities that are not part of the stan-
dard real number system. They should not be interpreted automatically as
“error values,” but they should be treated with respect. When an infinity or
NaN arises in a code in which nobody has analyzed the code correctness in the
presence of infinity or NaN values, there is likely to be a problem. But when
they are accounted for in the design and analysis of a floating point routine,
these representations have significant value. For example, while an expres-
sion like 0/0 cannot be interpreted without context (and therefore yields a
NaN in floating point), given context — eg., a computation involving a re-
movable singularity — we may be able to interpret a NaN, and potentially

!The extended reals in this case means R together with +0c0. This is sometimes called
the two-point compactification of R. In some areas of analysis (e.g. complex variables),
the one-point compactification involving a single, unsigned infinity is also useful. This was
explicitly supported in early proposals for the IEEE floating point standard, but did not
make it in. The fact that we have signed infinities in floating point is one reason why it
makes sense to have signed zeros — otherwise, for example, we would have 1/(1/ — 00)
yield +o0.

Bindel, Fall 2016 Matrix Computations (CS 6210)

replace it with some ordinary floating point value.

3 Basic floating point arithmetic
For a general real number z, we will write
fi(z) = correctly rounded floating point representation of x.

By default, “correctly rounded” means that we find the closest floating point
number to z, breaking any ties by rounding to the number with a zero in
the last bit?. If x exceeds the largest normal floating point number, then
fi(z) = oo; similarly, if = is a negative number with magnitude greater than
the most negative normalized floating point value, then fl(x) = —o0.

For basic operations (addition, subtraction, multiplication, division, and
square root), the floating point standard specifies that the computer should
produce the true result, correctly rounded. So the MATLAB statement

% Compute the sum of x and y (assuming they are exact)
z = X + vy

actually computes the quantity 2 = fl(z+y). If 2 is a normal double-precision
floating point number, it will agree with the true z to 52 bits after the binary
point. That is, the relative error will be smaller in magnitude than the
machine epsilon €pacn = 27°% ~ 1.1 x 10716:

z2=2(1490), 0] < €mach-

More generally, basic operations that produce normalized numbers are cor-
rect to within a relative error of €.

The floating point standard also recommends that common transcenden-
tal functions, such as exponential and trig functions, should be correctly
rounded?, though compliant implementations that do not follow with this
recommendation may produce results with a relative error just slightly larger

2There are other rounding modes beside the default, but we will not discuss them in
this class

3For algebraic functions, it is possible to determine in advance how many additional
bits of precision are needed to correctly round the result for a function of one input. In
contrast, transcendental functions can produce outputs that fall arbitrarily close to the
halfway point between two floating point numbers.

w N

Bindel, Fall 2016 Matrix Computations (CS 6210)

than €paa. Correct rounding of transcendentals is useful in large part be-
cause it implies other properties: for example, if a computer function to
evaluate a monotone function returns a correctly rounded result, then the
computed function is also monotone.

Operations in which NaN appears as an input conventionally (but not
always) produce a NaN output. Comparisons in which NaN appears conven-
tionally produce false. But sometimes there is some subtlety in accomplishing
these semantics. For example, the following code for finding the maximum
element of a vector returns a NaN if one appears in the first element, but
otherwise results in the largest non-NaN element of the array:

function [vmax] = mymaxl (V)
% Find the maximum element of a vector —— naive about NaN

vmax = v (1);
for k = 2:1length(v)

if v(k) > vmax, vmax = v(k); end
end

In contrast, the following code always propagates a NaN to the output if one
appears in the input

function [vmax] = mymax2 (v)
% Find the max a vector —-—- or NaN if any element 1is NaN
vmax = v(1l);

for k = 2:1length(v)
if isnan(v(k))

vmax = v(k);
elseif v (k) > vmax
vmax = v(k);
end
end

You are encouraged to play with different vectors involving some NaN or
all NaN values to see what the semantics for the built-in vector max are in
MATLAB, Octave, or your language of choice. You may be surprised by the
results!

Apart from NaN, floating point numbers do correspond to real numbers,
and comparisons between floating point numbers have the usual semantics
associated with comparisons between floating point numbers. The only point
that deserves some further comment is that plus zero and minus zero are con-
sidered equal as floating point numbers, despite the fact that they are not

Bindel, Fall 2016 Matrix Computations (CS 6210)

bitwise identical (and do not produce identical results in all input expres-
sions)?.

4 Exceptions

We say there is an exception when the floating point result is not an ordinary
value that represents the exact result. The most common exception is inexact
(i.e. some rounding was needed). Other exceptions occur when we fail to
produce a normalized floating point number. These exceptions are:

Underflow: An expression is too small to be represented as a normalized
floating point value. The default behavior is to return a subnormal.

Overflow: An expression is too large to be represented as a floating point
number. The default behavior is to return inf.

Invalid: An expression evaluates to Not-a-Number (such as 0/0)

Divide by zero: An expression evaluates “exactly” to an infinite value (such
as 1/0 or log(0)).

When exceptions other than inexact occur, the usual “1 4 ¢” model used for
most rounding error analysis is not valid.

An important feature of the floating point standard is that an exception
should not stop the computation by default. This is part of why we have
representations for infinities and NaNs: the floating point system is closed in
the sense that every floating point operation will return some result in the
floating point system. Instead, by default, an exception is flagged as having
occurred®. An actual exception (in the sense of hardware or programming
language exceptions) occurs only if requested.

4This property of signed zeros is just a little bit horrible. But to misquote Winston
Churchill, it is the worst definition of equality except all the others that have been tried.

SThere is literally a register inside the computer with a set of flags to denote whether
an exception has occurred in a given chunk of code. This register is highly problematic,
as it represents a single, centralized piece of global state. The treatment of the exception
flags — and of exceptions generally — played a significant role in the debates leading up
to the last revision of the IEEE 754 floating point standard, and I would be surprised if
they are not playing a role again in the current revision of the standard.

Bindel, Fall 2016 Matrix Computations (CS 6210)

5 Modeling floating point

The fact that normal floating point results have a relative error bounded
by €mach gives us a useful model for reasoning about floating point error.
We will refer to this as the “1 4+ ¢” model. For example, suppose x is an
exactly-represented input to the MATLAB statement

z = 1-xX*Xx;

We can reason about the error in the computed Z as follows:

t; = fl(2?) = 2%(1 + &)

§12?
— — 2 1
t21—t1<1—x‘>(1—1_x2>

R oy
z:ﬂ(l—tl):z(l_ 1i$x2)(1+52)

511’2
%2(1—1_x2+(52),

where |01, [02] < €macn- As before, we throw away the (tiny) term involving
d102. Note that if z is close to zero (i.e. if there is cancellation in the sub-
traction), then the model shows the result may have a large relative error.

5.1 First-order error analysis

Analysis in the 149 model quickly gets to be a sprawling mess of Greek letters
unless one is careful. A standard trick to get around this is to use first-order
error analysis in which we linearize all expressions involving roundoff errors.
In particular, we frequently use the approximations

(14 01)(1+02) = 1+ 61 + 62
1/(1+9)~1—0.
In general, we will resort to first-order analysis without comment. Those
students who think this is a sneaky trick to get around our lack of facility

with algebra® may take comfort in the fact that if |0;| < €macn, then in double
precision

n N
[Ja+06) JT @+6)7" < (1+1.03Nemacn)
=1 i=n+1

5Which it is.

Bindel, Fall 2016 Matrix Computations (CS 6210)

for N < 10™ (and a little further).

5.2 Shortcomings of the model

The 14 0 model has two shortcomings. First, it is only valid for expressions
that involve normalized numbers — most notably, gradual underflow breaks
the model. Second, the model is sometimes pessimistic. Certain operations,
such as taking a difference between two numbers within a factor of 2 of
each other, multiplying or dividing by a factor of two’, or multiplying two
single-precision numbers into a double-precision result, are exact in floating
point. There are useful operations such as simulating extended precision
using ordinary floating point that rely on these more detailed properties of
the floating point system, and cannot be analyzed using just the 149 model.

" Assuming that the result does not overflow or produce a subnormal.

	Logistics
	Binary floating point
	Normalized representations
	Subnormal representations
	Infinities and NaNs

	Basic floating point arithmetic
	Exceptions
	Modeling floating point
	First-order error analysis
	Shortcomings of the model

