Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-09-02

1 Notions of error

The art of numerics is finding an approximation with a fast algorithm, a
form that is easy to analyze, and an error bound. Given a task, we want
to engineer an approximation that is good enough, and that composes well
with other approximations. To make these goals precise, we need to define
types of errors and error propagation, and some associated notation — which
is the point of this lecture.

1.1 Absolute and relative error

Suppose T is an approximation to . The absolute error is
Cabs = |T — x|

Absolute error has the same dimensions as x, and can be misleading without
some context. An error of one meter per second is dramatic if z is my walking
pace; if x is the speed of light, it is a very small error.

The relative error is a measure with a more natural sense of scale:

d
erel = ’x|

Relative error is familiar in everyday life: when someone talks about an error
of a few percent, or says that a given measurement is good to three significant
figures, she is describing a relative error.

We sometimes estimate the relative error in approximating x by & using
the relative error in approximating by z:

| — 7]

érel = ~
2|
As long as é,, < 1, a little algebra gives that

€rel €rel

— €rel
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If we know é,. is much less than one, then it is a good estimate for ey. If
érel 18 not much less than one, we know that Z is a poor approximation to x.
Either way, €, is often just as useful as e,, and may be easier to estimate.

Relative error makes no sense for x = 0, and may be too pessimistic when
the property of x we care about is “small enough.” A natural intermediate
between absolute and relative errors is the mixed error

& — |
€mixed = 77 _
lz| + 7

where 7 is some natural scale factor associated with z.

1.2 Errors beyond scalars

Absolute and relative error make sense for vectors as well as scalars. If | - ||
is a vector norm and & and x are vectors, then the (normwise) absolute and
relative errors are

€abs = ||i' - x”u Crel =

We might also consider the componentwise absolute or relative errors

_ |5 - |$z - $z|
€abs,i = |xz - xz’ Creli = —7 7
]
The two concepts are related: the maximum componentwise relative error
can be computed as a normwise error in a norm defined in terms of the
solution vector:

max e = [} — ]

where [||z]| = ||diag(z)'z||. More generally, absolute error makes sense
whenever we can measure distances between the truth and the approxima-
tion; and relative error makes sense whenever we can additionally measure
the size of the truth. However, there are often many possible notions of
distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.
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1.3 Dimensions and scaling

The first step in analyzing many application problems is nondimensional-
1zation: combining constants in the problem to obtain a small number of
dimensionless constants. Examples include the aspect ratio of a rectangle,
the Reynolds number in fluid mechanics!, and so forth. There are three big
reasons to nondimensionalize:

e Typically, the physics of a problem only really depends on dimensionless
constants, of which there may be fewer than the number of dimensional
constants. This is important for parameter studies, for example.

e For multi-dimensional problems in which the unknowns have different
units, it is hard to judge an approximation error as “small” or “large,”
even with a (normwise) relative error estimate. But one can usually
tell what is large or small in a non-dimensionalized problem.

e Many physical problems have dimensionless parameters much less than
one or much greater than one, and we can approximate the physics in
these limits. Often when dimensionless constants are huge or tiny and
asymptotic approximations work well, naive numerical methods work
work poorly. Hence, nondimensionalization helps us choose how to
analyze our problems — and a purely numerical approach may be silly.

2 Forward and backward error

We often approximate a function f by another function f . For a particular
x, the forward (absolute) error is

[f (@) = f(2)].

In words, forward error is the function output. Sometimes, though, we can
think of a slightly wrong input:

~

f(x) = f(2).

In this case, |x — | is called the backward error. An algorithm that always
has small backward error is backward stable.

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field
that appreciates the power of dimensional analysis
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A condition number a tight constant relating relative output error to
relative input error. For example, for the problem of evaluating a sufficiently
nice function f(z) where x is the input and & = x + h is a perturbed input
(relative error |h|/|z|), the condition number x[f(x)] is the smallest constant

|

such that A B — f()]
r+n)—Jlx
< &lf(2)]5—= 4 o(|h])
|f ()] |z

If f is differentiable, the condition number is

_Nf@+h) = f@)/[f(@)] _ [f (@)l

k[ f(x)] = lim = :

0 |(x+h) —z|/|x] |f ()]

If f is Lipschitz in a neighborhood of = (locally Lipschitz), then

()] = M@l

where My is the smallest constant such that | f(z+h)—f(z)| < My|h|4+o(|h]).
When the problem has no linear bound on the output error relative to the
input error, we sat the problem has an infinite condition number. An example
is 2173 at x = 0.

A problem with a small condition number is called well-conditioned; a
problem with a large condition number is ill-conditioned. A backward stable
algorithm applied to a well-conditioned problem has a small forward error.

3 Perturbing matrix problems

To make the previous discussion concrete, suppose I want y = Az, but
because of a small error in A (due to measurement errors or roundoff effects),
I instead compute § = (A+ E)z where E is “small.” The expression for the
absolute error is trivial:

19— yll = [[E=|.
But I usually care more about the relative error.
9 —ll _ |Ba])
[yl Iyl

If we assume that A is invertible and that we are using consistent norms
(which we will usually assume), then

1Ez]| = [EA™ Il < [IE[IA™ Iy,



Bindel, Fall 2016 Matrix Computations (CS 6210)

which gives us

19— yll —y LE] 1£]]
< [[A[IA™ T = # (A=
[yl 1Al 1Al

That is, the relative error in the output is the relative error in the input mul-
tiplied by the condition number x(A) = ||AJ|||[A™Y||. Technically, this is the
condition number for the problem of matrix multiplication (or solving linear
systems, as we will see) with respect to a particular (consistent) norm; dif-
ferent problems have different condition numbers. Nonetheless, it is common
to call this “the” condition number of A.

For some problems, we are given more control over the structure of the
error matrix F. For example, we might suppose that A is symmetric, and
ask whether we can get a tighter bound if in addition to assuming a bound
on ||E], we also assume E is symmetric. In this particular case, the answer
is “no” — we have the same condition number either way, at least for the
2-norm or Frobenius norm?. In other cases, assuming a structure to the
perturbation does indeed allow us to achieve tighter bounds.

As an example of a refined bound, we consider moving from condition
numbers based on small norm-wise perturbations to condition numbers based
on small element-wise perturbations. Suppose E is elementwise small relative
to A, i.e. |E| < ¢|A|. Suppose also that we are dealing with a norm such that
| X < || |X] |l, as is true of all the norms we have seen so far. Then

19—yl _ _
—EW—SHEA1H§HMHA1HM

The quantity r(A) = || |A] |A7| || is the relative condition number; it
is closely related to the Skeel condition number which we will see in our
discussion of linear systems®. Unlike the standard condition number, the
relative condition number is invariant under column scaling of A; that is
Krel(AD) = Kre(A) where D is a nonsingular diagonal matrix.

What if, instead of perturbing A, we perturb x? That is, if § = AZ and
y = Az, what is the condition number relating ||y — y||/||y|| to ||z — ||/ ||=||?
We note that

19 =yl =A@ — )| < [[AJ[ll& — =[]

2This is left as an exercise for the student
3The Skeel condition number involves the two factors in the reverse order.
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and
Jzll = A7yl < 1AMyl = iyl = 1A =]l

Put together, this implies

The same condition number appears again!
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