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Notes for 2016-08-31

1 Matrix calculus

Numerical linear algebra is not just about algebra, but also about analysis,
the branch of mathematics that deals with real functions and operations
such as differentiation and integration (and their generalizations). This is
particularly relevant when we deal with error analysis, as we will soon.

1.1 Warm up: derivative of a dot product

Consider the real-valued expression yTx as a function of the vector variables
x, y ∈ Rn. How would we compute the gradient of yTx with respect to these
variables? The usual method taught in a first calculus class would be to
write the expression in terms of each of the components of x and y, and then
compute partial derivatives, i.e.

yTx =
n∑

i=1

xiyi

∂(yTx)

∂xj
= yj

∂(yTx)

∂yj
= xj.

This notation is fine for dealing with a dot product, in which we are summing
over only one variable; but when we deal with more complicated matrix
expressions, it quickly becomes painful to deal with coordinates. A neat trick
of notation is to work not with derivatives along the coordinate directions,
but with derivatives in an arbitrary direction (δx, δy) ∈ Rn × Rn:

d

ds

∣∣∣∣
s=0

(y + sδy)T (x+ sδx) = δyTx+ yT δx.

We denote the directional derivative by δ(yTx), giving the tidy expression

δ(yTx) = δyTx+ yT δx.

This is variational notation for reasoning about directional (Gateaux) deriva-
tives. It is often used in mechanics and in PDE theory and functional analysis
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(where the vector spaces involved are infinite-dimensional), and I have always
felt it deserves to be used more widely.

1.2 Some calculus facts

We will make frequent use of the humble product rule in this class:

δ(AB) = δAB + AδB.

As is always the case, the order of the terms in the products is important.
To differentiate a product of three terms (for example), we would have

δ(ABC) = (δA)BC + A(δB)C + AB(δC).

The product rule and implicit differentiation gives us

0 = δ(A−1A) = δ(A−1)A+ A−1δA.

Rearranging slightly, we have

δ(A−1) = −A−1(δA)A−1,

which is again a matrix version of the familiar rule from Calculus I, differing
only in that we have to be careful about the order of products. This rule
also nicely illustrates the advantage of variational notation; if you are uncon-
vinced, I invite you to write out the elements of the derivative of a matrix
inverse using conventional coordinate notation!

The vector 2-norm and the Frobenius norm for matrices are convenient
because the (squared) norm is a differentiable function of the entries. For
the vector 2-norm, we have

δ(‖x‖2) = δ(x∗x) = (δx)∗x+ x∗(δx);

observing that y∗x = (x∗y)∗ and z + z̄ = 2<(z), we have

δ(‖x‖2) = 2<(δx∗x).

Similarly, the Frobenius norm is associated with a dot product (the unsurprisingly-
named Frobenius inner product) on all the elements of the matrix, which we
can write in matrix form as

〈A,B〉F = tr(B∗A),

and we therefore have

δ(‖A‖2F ) = δ tr(A∗A) = 2< tr(δA∗A).
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1.3 The 2-norm revisited

In the previous lecture, we discussed the matrix 2-norm in terms of the
singular value decomposition. What if we did not know about the SVD?
By the definition, we would like to maximize φ(v)2 = ‖Av‖2 subject to
‖v‖2 = 1. Flexing our new variational notation, let’s work through the
first-order condition for a maximum. To enforce the condition, we form an
augmented Lagrangian

L(v, µ) = ‖Av‖2 − µ(‖v‖2 − 1)

and differentiating gives us

δL = 2<(δv∗(A∗Av − µv))− δµ(‖v‖2 − 1).

The first-order condition for a maximum or minimum is δL = 0 for all pos-
sible δv and δµ; this gives

A∗Av = µv, ‖v‖2 = 1,

which is an eigenvalue problem involving the Gram matrix A∗A. We will see
this eigenvalue problem again — and the more general idea of the connection
between eigenvalue problems and optimizing quadratic forms — later in the
course.

1.4 Norms and Neumann series

We will do a great deal of operator norm manipulation this semester, almost
all of which boils down to repeated use of the triangle inequality and the
submultiplicative property. For now, we illustrate the point by a simple,
useful example: the matrix version of the geometric series.

Suppose F is a square matrix such that ‖F‖ < 1 in some operator norm,
and consider the power series

n∑
j=0

F j.

Note that ‖F j‖ ≤ ‖F‖j via the submultiplicative property of induced oper-
ator norms. By the triangle inequality, the partial sums satisfy

(I − F )
n∑

j=0

F j = I − F n+1.



Bindel, Fall 2016 Matrix Computations (CS 6210)

Hence, we have that

‖(I − F )
n∑

j=0

F j − I‖ ≤ ‖F‖n+1 → 0 as n→∞,

i.e. I−F is invertible and the inverse is given by the convergent power series
(the geometric series or Neumann series)

(I − F )−1 =
∞∑
j=0

F j.

By applying submultiplicativity and triangle inequality to the partial sums,
we also find that

‖(I − F )−1‖ ≤
∞∑
j=0

‖F‖j =
1

1− ‖F‖
.

Note as a consequence of the above that if ‖A−1E‖ < 1 then

‖(A+ E)−1‖ = ‖(I + A−1E)−1A−1‖ ≤ ‖A−1‖
1− ‖A−1E‖

.

That is, the Neumann series gives us a sense of how a small perturbation to
A can change the norm of A−1.
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