
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-08-26

1 Logistics

1. Our enrollment is at 50, and there are still a few students who want to
get in. We only have 50 seats in the room, and I cannot increase the
cap further. So if you are not planning to stick with the class, please
don’t wait to formally drop!

2. I got off to a slow start, but I will typically try to post notes for each
lecture before the lecture itself (though maybe only the morning of the
lecture). The notes are on GitHub, so if you find errors, please feel free
to help me correct them.

3. The notes for the first lecture include some material that I did not talk
about explicitly: recommendations for reading in linear algebra and
numerical linear algebra to supplement what I cover in class, and a
long list of notational conventions that I plan to follow in class and in
the notes.

2 Matrix shapes and structures

In linear algebra, we talk about different matrix structures. For example:

• A ∈ Rn×n is nonsingular if the inverse exists; otherwise it is singular.

• Q ∈ Rn×n is orthogonal if QTQ = I.

• A ∈ Rn×n is symmetric if A = AT .

• S ∈ Rn×n is skew-symmetric if S = −ST .

• L ∈ Rn×m is low rank if L = UV T for U ∈ Rn×k and V ∈ Rm×k where
k � min(m,n).

These are properties of an underlying linear map or quadratic form; if we
write a different matrix associated with an (appropriately restricted) change
of basis, it will also have the same properties.

In matrix computations, we also talk about the shape (nonzero structure)
of a matrix. For example:



Bindel, Fall 2016 Matrix Computations (CS 6210)

• D is diagonal if dij = 0 for i 6= j.

• T is tridiagonal if tij = 0 for i 6∈ {j − 1, j, j + 1}.

• U is upper triangular if uij = 0 for i > j and strictly upper triangular
if uij = 0 for i ≥ j (lower triangular and strictly lower triangular are
similarly defined).

• H is upper Hessenberg if hij = 0 for i > j + 1.

• B is banded if bij = 0 for |i− j| > β.

• S is sparse if most of the entries are zero. The position of the nonzero
entries in the matrix is called the sparsity structure.

We often represent the shape of a matrix by marking where the nonzero
elements are (usually leaving empty space for the zero elements); for example:

Diagonal


×
×
×
×
×

 Tridiagonal


× ×
× × ×
× × ×
× × ×
× ×



Triangular


× × × × ×
× × × ×
× × ×
× ×
×

 Hessenberg


× × × × ×
× × × × ×
× × × ×
× × ×
× ×



We also sometimes talk about the graph of a (square) matrix A ∈ Rn×n:
if we assign a node to each index {1, . . . , n}, an edge (i, j) in the graph
corresponds to aij 6= 0. There is a close connection between certain classes
of graph algorithms and algorithms for factoring sparse matrices or working
with different matrix shapes. For example, the matrix A can be permuted so
that PAP T is upper triangular iff the associated directed graph is acyclic.

The shape of a matrix (or graph of a matrix) is not intrinsically associ-
ated with a more abstract linear algebra concept; apart from permutations,
sometimes, almost any change of basis will completely destroy the shape.



Bindel, Fall 2016 Matrix Computations (CS 6210)

3 Sparse matrices

We say a matrix is sparse if the vast majority of the entries are zero. Because
we only need to explicitly keep track of the nonzero elements, sparse matrices
require less than O(n2) storage, and we can perform many operations more
cheaply with sparse matrices than with dense matrices. In general, the cost
to store a sparse matrix, and to multiply a sparse matrix by a vector, is
O(nnz(A)), where nnz(A) is the number of nonzeros in A.

Two specific classes of sparse matrices are such ubiquitous building blocks
that it is worth pulling them out for special attention. These are diagonal
matrices and permutation matrices. Many linear algebra libraries also have
support for banded matrices (and sometimes for generalizations such as sky-
line matrices). Matlab also provides explicit support for general sparse
matrices in which the nonzeros can appear in any position.

3.1 Diagonal matrices

A diagonal matrix is zero except for the entries on the diagonal. We often
associate a diagonal matrix with the vector of these entries, and we will adopt
in class the notational convention used in Matlab: the operator diag maps
a vector to the corresponding diagonal matrix, and maps a matrix to the
vector of diagonal entries. For example, for the vector and matrix

d =

d1d2
d3

D =

d1 d2
d3


we would write D = diag(d) and d = diag(D).

The Matlab routine diag forms a dense representation of a diagonal
matrix. Next to inv, it is one of the Matlab commands that is most
commonly poorly used. The primary good use of diag is as the first term
in a sum that builds a more complicated matrix. But multiplication by a
diagonal matrix should never go through the diag routine. To multiple a
diagonal matrix by a vector, the preferred idiom is to use the elementwise
multiplication operation, i.e.

1 y = diag(d) * x; % Bad -- O(nˆ2) time and intermediate storage
2 y = d .* x; % Good -- equivalent, but O(n) time and space

To multiply a diagonal matrix by a vector in Matlab, use the bsxfun
command, e.g.



Bindel, Fall 2016 Matrix Computations (CS 6210)

1 B = diag(d) * A; % Bad -- left scaling in O(nˆ3) time
2 C = A * diag(d); % Bad -- right scaling in O(nˆ3) time
3 B = bsxfun(@times, d, A); % Good -- O(nˆ2) time
4 C = bsxfun(@times, A, d.’); % Ditto

3.2 Permutations

A permutation matrix is a 0-1 matrix in which one appears exactly once
in each row and column. We typically use P or Π to denote permutation
matrices; if there are two permutations in a single expression, we might use
P and Q.

A permutation matrix is so named because it permutes the entries of
a vector. As with diagonal matrices, it is usually best to work with per-
mutations implicitly in computational practice. For any given permutation
vector P , we can define an associated mapping vector p such that p(i) = j
iff Pij = 1. We can then apply the permutation to a vector or matrix using
Matlab’s indexing operations:

1 B = P*A; % Straightforward, but slow if P is a dense rep’n
2 C = A*P’;
3 B = A(p,:); % Better
4 C = A(:,p);

To apply a transpose permutation, we would usually use the permuted in-
dexing on the destination rather than the source:

1 y = P’*x; % Implies that P*y = x
2 y(p) = x; % Apply the transposed permutation via indexing

3.3 Narrowly banded matrices

If a matrix A has zero entries outside a narrow band near the diagonal, we
say that A is a banded matrix. More precisely, if aij = 0 for j < i − k1 or
j > i + k2, we say that A has lower bandwidth k1 and upper bandwidth k2.
The most common narrowly-banded matrices in matrix computations (other
than diagonal matrices) are tridiagonal matrices in which k1 = k2 = 1.

In the conventional storage layout for band matrices (used by LAPACK)
the nonzero entries for a band matrix A are stored in a packed storage matrix
B such that each column of B corresponds to a column of A and each row



Bindel, Fall 2016 Matrix Computations (CS 6210)

of B corresponds to a nonzero (off-)diagonal of A. For example,
a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

 7→

∗ a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗


Matlab does not provide easy specialized support for band matrices (though
it is possible to access the band matrix routines if you are tricky). Instead,
the simplest way to work with narrowly banded matrices in Matlab is to
use a general sparse representation.

3.4 General sparse matrices

For diagonal and band matrices, we are able to store nonzero matrix en-
tries explicitly, but (as with the dense matrix format) the locations of those
nonzero entries in the matrix are implicit. For permutation matrices, the
values of the nonzero entries are implicit (they are always one), but we must
store their positions explicitly. In a general sparse matrix format, we store
both the positions and the values of nonzero entries explicitly.

For input and output, Matlab uses a coordinate format for sparse ma-
trices consisting of three parallel arrays (i, j, and aij). Each entry in the
parallel arrays represents a nonzero in the matrix with value aij(k) at row
i(k) and column j(k). For input, repeated entries with the same row
and column are allowed; in this case, all the entries for a given location are
summed together in the final matrix. For example,

1 i = [1, 2, 3, 4, 4]; % Row indices
2 j = [2, 3, 4, 5, 5]; % Col indices
3 v = [5, 8, 13, 21, 34]; % Entry values/contributions
4 A = sparse(i,j,v,5,5); % 5-by-5 sparse matrix
5 full(A) % Convert to dense format and display
6

7 % Output:
8 % ans =
9 %

10 % 0 5 0 0 0
11 % 0 0 8 0 0
12 % 0 0 0 13 0
13 % 0 0 0 0 55
14 % 0 0 0 0 0



Bindel, Fall 2016 Matrix Computations (CS 6210)

This functionality is useful in some applications (e.g. for assembling finite
element matrices).

Internally, Matlab uses a compressed sparse column format for sparse
matrices. In this format, the row position and value for each nonzero are
stored in parallel arrays, in column-major order (i.e. all the elements of col-
umn k appear before elements of column k + 1). The column positions are
not stored explicitly for every element; instead, a pointer array indicates the
offset in the row and entry arrays of the start of the data for each column; a
pointer array entry at position n+ 1 indicates the total number of nonzeros
in the data structure.

The compressed sparse column format has some features that may not
be obvious at first:

• For very sparse matrices, multiplying a sparse format matrix by a vector
is much faster than multiplying a dense format matrix by a vector —
but this is not true if a significant fraction of the matrix is nonzeros.
The tradeoff depends on the matrix size and machine details, but sparse
matvecs will often have the same speed as — or even be slower than
— dense matvecs when the sparsity is above a few percent.

• Adding contributions into a sparse matrix is relatively slow, as each
sum requires recomputing the sparse indexing data structure and re-
allocating memory. To build up a sparse matrix as the sum of many
components, it is usually best to use the coordinate form first.

In general, though, the sparse matrix format has a great deal to recommend
it for genuinely sparse matrices. Matlab uses the sparse matrix format
not only for general sparse matrices, but also for the special case of banded
matrices.

4 Data-sparse matrices

A sparse matrix has mostly zero entries; this lets us design compact storage
formats with space proportional to the number of nonzeros, and fast matrix-
vector multiplication with time proportional to the number of nonzeros. A
data-sparse matrix can be described with far fewer than n2 parameters, even
if it is not sparse. Such matrices usually also admit compact storage schemes
and fast matrix-vector products. This is significant because many of the



Bindel, Fall 2016 Matrix Computations (CS 6210)

iterative algorithms we describe later in the semester do not require any
particular representation of the matrix; they only require that we be able to
multiply by a vector quickly.

The study of various data sparse representations has blossomed into a
major field of study within matrix computations; in this section we give a
taste of a few of the most common types of data sparsity. We will see several
of these structures in model problems used over the course of the class.

4.1 (Nearly) low-rank matrices

The simplest and most common data-sparse matrices are low-rank matrices.
If A ∈ Rm×n has rank k, it can be written in outer product form as

A = UW T , , U ∈ Rm×k,W ∈ Rn×k.

This factored form has a storage cost of (n + m)k, a significant savings
over the mn cost of the dense representation in the case k � max(m,n). To
multiply a low-rank matrix by a vector fast, we need only to use associativity
of matrix operations

1 y = (U*V’)*x; % O(mn) storage, O(mnk) flops
2 y = U*(V’*x); % O((m+n) k) storage and flops

4.2 Circulant, Toeplitz, and Hankel structure

A Toeplitz matrix is a matrix in which each (off)-diagonal is constant, e.g.

A =


a0 a1 a2 a3
a−1 a0 a1 a2
a−2 a−1 a0 a1
a−3 a−2 a−1 a0

 .
Toeplitz matrices play a central role in the theory of constant-coefficient finite
difference equations and in many applications in signal processing.

Multiplication of a Toeplitz matrix by a vector represents (part of) a
convolution; and afficionados of Fourier analysis and signal processing may
already know that this implies that matrix multiplication can be done in
O(n log n) time using a discrete Fourier transforms. The trick to this is to



Bindel, Fall 2016 Matrix Computations (CS 6210)

view the Toeplitz matrix as a block in a larger circulant matrix

C =



a0 a1 a2 a3 a−3 a−2 a−1

a−1 a0 a1 a2 a3 a−3 a−2

a−2 a−1 a0 a1 a2 a3 a−3

a−3 a−2 a−1 a0 a1 a2 a3
a3 a−3 a−2 a−1 a0 a1 a2
a2 a3 a−3 a−2 a−1 a0 a1
a1 a2 a3 a−3 a−2 a−1 a0


=

3∑
k=−3

a−kP
k,

where P is the cyclic permutation matrix

P =


0 0 . . . 0 1
1 0

1 0
. . .

...
1 0

 .

As we will see later in the course, the discrete Fourier transform matrix is
the eigenvector matrix for this cyclic permutation, and this is a gateway to
fast matrix-vector multiplication algorithms.

Closely-related to Toeplitz matrices are Hankel matrices, which are con-
stant on skew-diagonals (that is, they are Toeplitz matrices flipped upside
down). Hankel matrices appear in numerous applications in control theory.

4.3 Separability and Kronecker product structure

The Kronecker product A ⊗ B ∈ R(mp)×(nq) of matrices A ∈ Rm×n and B ∈
Rp×q is the (gigantic) matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

 .
Multiplication of a vector by a Kronecker product represents a matrix triple
product:

(A⊗B) vec(X) = vec(BXAT )



Bindel, Fall 2016 Matrix Computations (CS 6210)

where vec(X) represents the vector formed by listing the elements of a matrix
in column major order, e.g.

vec

[
1 3
2 4

]
=


1
2
3
4

 .
Kronecker product structure appears often in control theory applications

and in problems that arise from difference or differential equations posed
on regular grids — you should expect to see it for regular discretizations of
differential equations where separation of variables works well. There is also
a small industry of people working on tensor decompositions, which feature
sums of Kronecker products.

4.4 Low-rank block structure

In problems that come from certain areas of mathematical physics, inte-
gral equations, and PDE theory, one encounters matrices that are not low
rank, but have low-rank submatrices. The fast multipole method computes
a matrix-vector product for one such class of matrices; and again, there is
a cottage industry of related methods, including the H matrices studied by
Hackbush and colleagues, the sequentially semi-separable (SSS) and heirar-
chically semi-separable (HSS) matrices, quasi-separable matrices, and a horde
of others. A good reference is the pair of books by Vandebril, Van Barel and
Mastronardi [1, 2].

References

[1] Raf Vandebril, Marc Van Barel, and Nicola Mastonardi. Matrix Com-
putations and Semiseparable Matrices: Eigenvalue and Singular Value
Methods. John Hopkins University Press, 2010.

[2] Raf Vandebril, Marc Van Barel, and Nicola Mastonardi. Matrix Com-
putations and Semiseparable Matrices: Linear Systems. John Hopkins
University Press, 2010.


	Logistics
	Matrix shapes and structures
	Sparse matrices
	Diagonal matrices
	Permutations
	Narrowly banded matrices
	General sparse matrices

	Data-sparse matrices
	(Nearly) low-rank matrices
	Circulant, Toeplitz, and Hankel structure
	Separability and Kronecker product structure
	Low-rank block structure


