
Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-08-24

1 Logistics

CS 6210 is a graduate-level introduction to numerical linear algebra. We will
study direct and iterative methods for linear systems, least squares prob-
lems, eigenvalue problems, and singular value problems. There is a detailed
syllabus and rough schedule at the class web:

http://www.cs.cornell.edu/˜bindel/class/cs6210-f16/

The web page is also your source for the homework, lecture notes, and course
announcements. The web page also points to a discussion forum (Piazza)
and the Course Management System (CMS) used for homework submissions.
There is also a link to a GitHub repository with the source for these notes.
If you find an error, feel free to help me fix it!

I will assume that you have already had a course in linear algebra and
that you know how to program. A previous numerical methods course is
not required. The course will involve MATLAB programming, so it will
also be helpful – but not strictly necessary – for you to have prior exposure
to MATLAB. If you do not know MATLAB already but you have prior
programming experience, you can learn MATLAB quickly enough. Octave
is a viable substitute for MATLAB for the work in this course.

Several of you have already taken CS 4220 (with me). You will find that
some sections of the course are review, particularly at the beginning. How-
ever, because CS 6210 is a graduate course with more assumed background,
and because we will spend the entire semester on numerical linear algebra,
we will cover a wider variety of topics in numerical linear algebra and at a
deeper level. If you have concerns about whether this is the class for you,
please come and talk to me.

This course has proven surprisingly popular, and we hit the room cap
during pre-enrollment. We have since moved to a larger room that can acco-
modate 50 (rather than 40), and I hope to be able to seat all comers. If you
are not planning to take the course for credit, please help us out by releasing
your seat. If you are planning to take the course for credit, please send me
email with your name and NetID, and I will try to make sure something sane
works out.

http://www.cs.cornell.edu/~bindel/class/cs6210-f16/

Bindel, Fall 2016 Matrix Computations (CS 6210)

2 Linear algebra references

We assume some mathematical pre-requisites: linear algebra and “sufficient
mathematical maturity.” This should be enough for most students, but some
will want to brush up on their linear algebra. For those who want to review, or
who want a reference while taking the course, I have a few recommendations.

There are a few options when it comes to linear algebra basics. At Cornell,
our undergraduate linear algebra course uses the text by Lay [4]; the texts by
Strang [5, 6] are a nice alternative. Strang’s Introduction to Linear Algebra [6]
is the textbook for the MIT linear algebra course that is the basis for his
enormously popular video lectures, available on MIT’s OpenCourseWare site;
if you prefer lecture to reading, Strang is known as an excellent lecturer.

These notes reflect the way that I teach matrix computations, but this
is far from the only approach. The style of this class is probably closest to
the style of the text by Demmel [1], which I recommend as a course text.
The text of Trefethen and Bau [7] covers roughly the same material, but
with a different emphasis; I recommend it for an alternative perspective. At
Cornell, our subscription to the SIAM book series means that both of these
books are available as e-books to students on the campus network.

For students who intend to use matrix computations as a serious part of
their future research career, the canonical reference is Matrix Computations
by Golub and Van Loan [3].

3 Basic notational conventions

In this section, we set out some basic notational conventions used in the class.

1. The complex unit is i (not i or j).

2. By default, all spaces in this class are finite dimensional. If there is
only one space and the dimension is not otherwise stated, we use n to
denote the dimension.

3. Concrete real and complex vector spaces are Rn and Cn, respectively.

4. Real and complex matrix spaces are Rm×n and Cm×n.

5. Unless otherwise stated, a concrete vector is a column vector.

Bindel, Fall 2016 Matrix Computations (CS 6210)

6. The vector e is the vector of all ones.

7. The vector ei has all zeros except a one in the ith place.

8. The basis {ei}ni=1 is the standard basis in Rn or Cn.

9. We use calligraphic math caps for abstract space, e.g. U ,V ,W .

10. When we say U is a basis for a space U , we mean U is an isomorphism
U → Rn. By a slight abuse of notation, we say U is a matrix whose
columns are the abstract vectors u1, . . . , un, and we write the linear
combination

∑n
i=1 uici concisely as Uc.

11. Similarly, U−1x represents the linear mapping from the abstract vector
x to a concrete coefficient vector c such that x = Uc.

12. The space of univariate polynomials of degree at most d is Pd.

13. Scalars will typically be lower case Greek, e.g. α, β. In some cases, we
will also use lower case Roman letters, e.g. c, d.

14. Vectors (concrete or abstract) are denoted by lower case Roman, e.g. x, y, z.

15. Matrices and linear maps are both denoted by upper case Roman,
e.g. A,B,C.

16. For A ∈ Rm×n, we denote the entry in row i and column j by aij. We
reserve the notation Aij to refer to a submatrix at block row i and
block column j in a partitioning of A.

17. We use a superscript star to denote dual spaces and dual vectors; that
is, v∗ ∈ V∗ is a dual vector in the space dual to V .

18. In Rn, we use x∗ and xT interchangeably for the transpose.

19. In Cn, we use x∗ and xH interchangeably for the conjugate transpose.

20. Inner products are denoted by angles, e.g. 〈x, y〉. To denote an alternate
inner product, we use subscripts, e.g. 〈x, y〉M = y∗Mx.

21. The standard inner product in Rn or Cn is also x · y.

Bindel, Fall 2016 Matrix Computations (CS 6210)

22. In abstract vector spaces with a standard inner product, we use v∗ to
denote the dual vector associated with v through the inner product,
i.e. v∗ = (w 7→ 〈w, v〉).

23. We use the notation ‖x‖ to denote a norm of the vector x. As with in-
ner products, we use subscripts to distinguish between multiple norms.
When dealing with two generic norms, we will sometimes use the no-
tation |||y||| to distinguish the second norm from the first.

24. We use order notation for both algorithm scaling with parameters go-
ing to infinity (e.g. O(n3) time) and for reasoning about scaling with
parameters going to zero (e.g. O(ε2) error). We will rely on context to
distinguish between the two.

25. We use variational notation to denote derivatives of matrix expressions,
e.g. δ(AB) = δAB + AδB where δA and δB represent infinitesimal
changes to the matrices A and B.

26. Symbols typeset in Courier font should be interpreted as Matlab code
or pseudocode, e.g. y = A*x.

27. The function notation fl(x) refers to taking a real or complex quantity
(scalar or vector) and representing each entry in floating point.

4 Matrix algebra versus linear algebra

We share a philosophy about linear algebra: we think basis-
free, we write basis-free, but when the chips are down we close
the office door and compute with matrices like fury.

— Irving Kaplansky on the late Paul Halmos [2],

Linear algebra is fundamentally about the structure of vector spaces and
linear maps between them. A matrix represents a linear map with respect
to some bases. Properties of the underlying linear map may be more or less
obvious via the matrix representation associated with a particular basis, and
much of matrix computations is about finding the right basis (or bases) to
make the properties of some linear map obvious. We also care about finding
changes of basis that are “nice” for numerical work.

Bindel, Fall 2016 Matrix Computations (CS 6210)

In some cases, we care not only about the linear map a matrix represents,
but about the matrix itself. For example, the graph associated with a matrix
A ∈ Rn×n has vertices {1, . . . , n} and an edge (i, j) if aij 6= 0. Many of the
matrices we encounter in this class are special because of the structure of
the associated graph, which we usually interpret as the “shape” of a matrix
(diagonal, tridiagonal, upper triangular, etc). This structure is a property of
the matrix, and not the underlying linear transformation; change the bases
in an arbitrary way, and the graph changes completely. But identifying and
using special graph structures or matrix shapes is key to building efficient
numerical methods for all the major problems in numerical linear algebra.

In writing, we represent a matrix concretely as an array of numbers.
Inside the computer, a dense matrix representation is a two-dimensional array
data structure, usually ordered row-by-row or column-by-column in order
to accomodate the one-dimensional structure of computer memory address
spaces. While much of our work in the class will involve dense matrix layouts,
it is important to realize that there are other data structures! The “best”
representation for a matrix depends on the structure of the matrix and on
what we want to do with it. For example, many of the algorithms we will
discuss later in the course only require a black box function to multiply an
(abstract) matrix by a vector.

5 Dense matrix basics

There is one common data structure for dense vectors: we store the vector as
a sequential array of memory cells. In contrast, there are two common data
structures for general dense matrices. In MATLAB (and Fortran), matrices
are stored in column-major form. For example, an array of the first four
positive integers interpreted as a two-by-two column major matrix represents
the matrix [

1 3
2 4

]
.

The same array, when interpreted as a row-major matrix, represents[
1 2
3 4

]
.

Unless otherwise stated, we will assume all dense matrices are represented
in column-major form for this class. As we will see, this has some concrete

Bindel, Fall 2016 Matrix Computations (CS 6210)

effects on the efficiency of different types of algorithms.

5.1 The BLAS

The Basic Linear Algebra Subroutines (BLAS) are a standard library inter-
face for manipulating dense vectors and matrices. There are three levels of
BLAS routines:

• Level 1: These routines act on vectors, and include operations such
scaling and dot products. For vectors of length n, they take O(n1)
time.

• Level 2: These routines act on a matrix and a vector, and include
operations such as matrix-vector multiplication and solution of trian-
gular systems of equations by back-substitution. For n × n matrices
and length n vectors, they take O(n2) time.

• Level 3: These routines act on pairs of matrices, and include opera-
tions such as matrix-matrix multiplication. For n × n matrices, they
take O(n3) time.

All of the BLAS routines are superficially equivalent to algorithms that can
be written with a few lines of code involving one, two, or three nested loops
(depending on the level of the routine). Indeed, except for some refinements
involving error checking and scaling for numerical stability, the reference
BLAS implementations involve nothing more than these basic loop nests.
But this simplicity is deceptive — a surprising amount of work goes into
producing high performance implementations.

5.2 Locality and memory

When we analyze algorithms, we often reason about their complexity ab-
stractly, in terms of the scaling of the number of operations required as
a function of problem size. In numerical algorithms, we typically measure
flops (short for floating point operations). For example, consider the loop to
compute the dot product of two vectors:

1 function [result] = mydot(x,y)
2 n = length(x);
3 result = 0;

Bindel, Fall 2016 Matrix Computations (CS 6210)

4 for i = 1:n
5 result = result + x(i)*y(i); % two flops/iteration
6 end

Because it takes n additions and n multiplications, we say this code takes 2n
flops, or (a little more crudely) O(n) flops.

On modern machines, though, counting flops is at best a crude way to
reason about how run times scale with problem size. This is because in
many computations, the time to do arithmetic is dominated by the time to
fetch the data into the processor! A detailed discussion of modern memory
architectures is beyond the scope of these notes, but there are at least two
basic facts that everyone working with matrix computations should know:

• Memories are optimized for access patterns with spatial locality: it is
faster to access entries of memory that are close to each other (ideally
in sequential order) than to access memory entries that are far apart.
Beyond the memory system, sequential access patterns are good for vec-
torization, i.e. for scheduling work to be done in parallel on the vector
arithmetic units that are present on essentially all modern processors.

• Memories are optimized for access patterns with temporal locality; that
is, it is much faster to access a small amount of data repeatedly than
to access large amounts of data.

The main mechanism for optimizing access patterns with temporal lo-
cality is a system of caches, fast and (relatively) small memories that can
be accessed more quickly (i.e. with lower latency) than the main memory.
To effectively use the cache, it is helpful if the working set (memory that is
repeatedly accessed) is smaller than the cache size. For level 1 and 2 BLAS
routines, the amount of work is proportional to the amount of memory used,
and so it is difficult to take advantage of the cache. On the other hand, level
3 BLAS routines do O(n3) work with O(n2) data, and so it is possible for a
clever level 3 BLAS implementation to effectively use the cache.

5.3 Matrix-vector multiply

Let us start with a very simple Matlab program for matrix-vector multi-
plication:

1 function y = matvec1(A,x)
2 % Form y = A*x (version 1)

Bindel, Fall 2016 Matrix Computations (CS 6210)

3

4 [m,n] = size(A);
5 y = zeros(m,1);
6 for i = 1:m
7 for j = 1:n
8 y(i) = y(i) + A(i,j)*x(j);
9 end

10 end

We could just as well have switched the order of the i and j loops to give us
a column-oriented rather than row-oriented version of the algorithm. Let’s
consider these two variants, written more compactly:

1 function y = matvec2_row(A,x)
2 % Form y = A*x (row-oriented)
3

4 [m,n] = size(A);
5 y = zeros(m,1);
6 for i = 1:m
7 y(i) = A(i,:)*x;
8 end

1 function y = matvec2_col(A,x)
2 % Form y = A*x (column-oriented)
3

4 [m,n] = size(A);
5 y = zeros(m,1);
6 for j = 1:n
7 y = y + A(:,j)*x(j);
8 end

It’s not too surprising that the builtin matrix-vector multiply routine
in Matlab runs faster than either of our matvec2 variants, but there are
some other surprises lurking. Try timing each of these matrix-vector multiply
methods for random square matrices of size 4095, 4096, and 4097, and see
what happens. Note that you will want to run each code many times so that
you don’t get lots of measurement noise from finite timer granularity; for
example, try

1 tic; % Start timer
2 for i = 1:100 % Do enough trials that it takes some time
3 % ... Run experiment here
4 end
5 toc % Stop timer

Bindel, Fall 2016 Matrix Computations (CS 6210)

0 100 200 300 400 500 600 700 800 900 1,000 1,100
0

2

4

6

8

10

12

n

G
F

lo
p
/s

Default
Two loops

Row-oriented
Col-oriented

Figure 1: Timing of four matrix-vector multiply implementations. In each
case, we report the effective time in GFLop/s. The line labeled “default” is
the built-in MATLAB matvec.

Bindel, Fall 2016 Matrix Computations (CS 6210)

On my machine (a late MacBook Pro 13 inch, late 2013 model) and using
Matlab 2016a, we show the GFlop rates (billions of flops/second) for the
three matrix multiply routines in Figure 5.3. There are a few things to notice:

• The performance of the built-in multiply far exceeds that of any of the
manual implementations.

• The peak performance occurs for moderate size matrices where the
matrix fits into cache, but there is enough work to hide the Matlab
loop overheads.

• The time required for the built-in routine varies dramatically (due to
so-called conflict misses) when the dimension is a multiple of a large
integer power of two.

• For n = 1024, the column-oriented version (which has good spatial
locality) is 10× faster than the row-oriented code, and 45× faster than
the two nested loop version.

If you are so inclined, consider yourself encouraged to repeat the experiment
using your favorite compiled language to see if any of the general trends
change significantly.

5.4 Matrix-matrix multiply

The classic algorithm to compute C := C + AB involves three nested loops

1 function [C] = matmul_3loop(A,B)
2 % Three nested loops version of matrix multiply (ijk order)
3

4 [m,p1] = size(A);
5 [p2,n] = size(C);
6 assert(p1 == p2, ’Dimension mismatch’);
7 C = zeros(m,n);
8

9 for i = 1:m
10 for j = 1:n
11 for k = 1:p
12 C(i,j) = C(i,j) + A(i,k)*B(k,j);
13 end
14 end
15 end

Bindel, Fall 2016 Matrix Computations (CS 6210)

This is sometimes called an inner product variant of the algorithm, because
the innermost loop is computing a dot product between a row of A and a
column of B. But addition is commutative and associative, so we can sum
the terms in a matrix-matrix product in any order and get the same result.
And we can interpret the orders! A non-exhaustive list is:

• ij(k) or ji(k): Compute entry cij as a product of row i from A and
column j from B (the inner product formulation)

• k(ij): C is a sum of outer products of column k of A and row k of
B for k from 1 to n (the outer product formulation)

• i(jk) or i(kj): Each row of C is a row of A multiplied by B

• j(ij) or j(ki): Each column of C is A multiplied by a column of C

At this point, we could write down all possible loop orderings and run a
timing experiment, similar to what we did with matrix-vector multiplication.
But the truth is that high-performance matrix-matrix multiplication routines
use another access pattern altogether, involving more than three nested loops,
and we will describe this now.

5.5 Blocking and performance

The basic matrix multiply outlined in the previous section will usually be at
least an order of magnitude slower than a well-tuned matrix multiplication
routine. There are several reasons for this lack of performance, but one of
the most important is that the basic algorithm makes poor use of the cache.
Modern chips can perform floating point arithmetic operations much more
quickly than they can fetch data from memory; and the way that the basic
algorithm is organized, we spend most of our time reading from memory
rather than actually doing useful computations. Caches are organized to
take advantage of spatial locality, or use of adjacent memory locations in a
short period of program execution; and temporal locality, or re-use of the
same memory location in a short period of program execution. The basic
matrix multiply organizations don’t do well with either of these. A better
organization would let us move some data into the cache and then do a lot
of arithmetic with that data. The key idea behind this better organization
is blocking.

Bindel, Fall 2016 Matrix Computations (CS 6210)

When we looked at the inner product and outer product organizations
in the previous sections, we really were thinking about partitioning A and
B into rows and columns, respectively. For the inner product algorithm, we
wrote A in terms of rows and B in terms of columns

a1,:
a2,:
...

am,:

 [b:,1 b:,2 · · · b:,n
]
,

and for the outer product algorithm, we wrote A in terms of colums and B
in terms of rows

[
a:,1 a:,2 · · · a:,p

]

b1,:
b2,:
...
bp,:

 .
More generally, though, we can think of writing A and B as block matrices:

A =


A11 A12 . . . A1,pb

A21 A22 . . . A2,pb
...

...
...

Amb,1 Amb,2 . . . Amb,pb



B =


B11 B12 . . . B1,pb

B21 B22 . . . B2,pb
...

...
...

Bpb,1 Bpb,2 . . . Bpb,nb


where the matrices Aij and Bjk are compatible for matrix multiplication.
Then we we can write the submatrices of C in terms of the submatrices of A
and B

Cij =
∑
k

AijBjk.

5.6 The lazy man’s approach to performance

An algorithm like matrix multiplication seems simple, but there is a lot
under the hood of a tuned implementation, much of which has to do with the

Bindel, Fall 2016 Matrix Computations (CS 6210)

organization of memory. We often get the best “bang for our buck” by taking
the time to formulate our algorithms in block terms, so that we can spend
most of our computation inside someone else’s well-tuned matrix multiply
routine (or something similar). There are several implementations of the
Basic Linear Algebra Subroutines (BLAS), including some implementations
provided by hardware vendors and some automatically generated by tools
like ATLAS. The best BLAS library varies from platform to platform, but
by using a good BLAS library and writing routines that spend a lot of time
in level 3 BLAS operations (operations that perform O(n3) computation on
O(n2) data and can thus potentially get good cache re-use), we can hope to
build linear algebra codes that get good performance across many platforms.

This is also a good reason to use Matlab: it uses pretty good BLAS
libraries, and so you can often get surprisingly good performance from it for
the types of linear algebraic computations we will pursue.

References

[1] James Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[2] John Ewing and F. W. Gehring, editors. Paul Halmos: Celebrating 50
Years of Mathematics. Springer, 1991.

[3] Gene Golub and Charles Van Loan. Matrix Computations. Johns Hopkins
University Press, fourth edition, 2013.

[4] David Lay, Steven Lay, and Judi McDonald. Linear Algebra and its
Applications. Pearson, fifth edition, 2016.

[5] Gilbert Strang. Linear Algebra and its Applications. Brooks/Cole Pub-
lishing, fourth edition, 2006.

[6] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge
Press, fourth edition, 2009.

[7] Lloyd N Trefethen and David Bau, III. Numerical Linear Algebra. SIAM,
1997.

	Logistics
	Linear algebra references
	Basic notational conventions
	Matrix algebra versus linear algebra
	Dense matrix basics
	The BLAS
	Locality and memory
	Matrix-vector multiply
	Matrix-matrix multiply
	Blocking and performance
	The lazy man's approach to performance

