HW 4

You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

- 1: Contrary conditioning Given a scalar C > 1, find $A \in \mathbb{R}^{2\times 2}$ for which all eigenvalues are one but $\kappa_2(A) \geq C$.
- **2: Interesting identity** Suppose $X, Y \in \mathbb{R}^{n \times k}$. Show that if $\lambda \neq 0$ is an eigenvalue of XY^T , then

$$\begin{bmatrix} -\lambda I & X \\ Y^T & -I \end{bmatrix}$$

is singular. Via this formulation, show λ is also an eigenvalue of Y^TX .

3: Vector recovery Suppose $T \in \mathbb{R}^{n \times n}$ is upper triangular and $\lambda = t_{ii}$ is a simple eigenvalue of T. Give a code to compute a column eigenvector v in $O(n^2)$ time.

function [v] = uptri_eigenvec(T,i)

- **4: Somewhat symmetric** Suppose A = H + E where $H = H^*$. Argue that if $\lambda = \alpha + \beta$ i is an eigenvalue of A, then $|\beta| \le n ||E||_2$.
- 5: Real rotations Suppose $A \in \mathbb{R}^{n \times n}$ has a complex conjugate pair of eigenvalues $\mu \exp(\pm i\theta) = \alpha \pm \beta i$ and corresponding eigenvectures $u \pm v i$, with μ larger than the magnitude of any other eigenvalue. Show that power iteration from a random starting vector gives the sequence

$$v_k \approx u \cos(k\theta + \gamma) - v \sin(k\theta + \gamma)$$

for large k.

6: Double-shift iteration Suppose $A \in \mathbb{R}^{n \times n}$ has a complex conjugate pair of eigenvalues near $\alpha + \beta$ i. Without resorting to complex arithmetic, give a two-dimensional variant of Rayleigh quotient iteration that gives a rapidly-convergent estimate for the invariant subspace associated with the pair of eigenvalues. You may wish to build from the codes in the notes first.

function [V,L] = rqi2d(A, a, b, rtol)