HW 2

You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: Entrywise errors Suppose $A x=b$ and $\hat{x}=x+e$ satisfies

$$
A \hat{x}=b+r .
$$

Suppose we are given an elementwise relative residual bound $\max _{i}\left|r_{i}\right| /\left|b_{i}\right|<$ γ; then show that

$$
\max _{i}\left|e_{i}\right| /\left|x_{i}\right| \leq \gamma\left\|\operatorname{diag}(x)^{-1} A^{-1} \operatorname{diag}(b)\right\|_{\infty} .
$$

2: Delicious differentials Suppose $P A=L U$, and assume that there are no ties during partial pivoting. Write a short Matlab routine to compute the variations δL and δU for a given change δA

```
function [dL, dU] = hw2deriv(L, U, P, dA)
```

3: Complementary conditioning Suppose A is symmetric and positive definite. Show that if S is a Schur complement that appears during factorization of A, then $\kappa_{2}(S) \leq \kappa_{2}(A)$. Hint: What is the relation between $\kappa_{2}(A)$ and $\kappa_{2}(L)$ where $A=L L^{T}$ is a Cholesky factorization? What is the relation between the Cholesky factorization of A and of S ?

4: Run for the border Suppose A satisfies

$$
\sigma_{1}(A) \leq C \sigma_{n-1}(A)
$$

for some modest C, but $\sigma_{n}(A)$ is very close to zero, and let solveA be a backward stable function for solving a linear system involving the matrix A. Assuming the bordered system

$$
\left[\begin{array}{ll}
A & b \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

is well conditioned. Write a Matlab code that uses block Gaussian elimination based with one step of iterative refinement to solve the system:
function $[x, y]=$ hw2refine(solveA, b, $C, d, f, g)$
Argue that this computation is backward stable.

