
Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 15: Monday, Nov 27–Wednesday, Nov 29

Tridiagonal reduction redux

Consider the problem of computing eigenvalues of a symmetric matrix A that
is large and sparse. Using the “grail” code in LAPACK, we can compute all
the eigenvalues of an n-by-n tridiagonal matrix in O(n) time; but the usual
Householder-based algorithm to reduce A to tridiagonal form costs O(n3).
Though it’s possible to maintain sparsity in some cases, it is not altogether
straightforward. So let’s see if we can try something different.

What we want is an orthogonal matrix Q such that AQ = QT , where

T =


α1 β1
β1 α2 β2

β2 α3
. . .

. βn−1
βn−1 αn

 .
Writing column j of this matrix equation gives us

Aqj = βj−1qj−1 + αjqj + βjqj+1,

where αj = qTj Aqj and βj−1 = qTj−1Aqj. If we rearrange this slightly, we have

rj+1 = Aqj − qjαj − qj−1βj−1
= Aqj − (qjq

T
j)Aqj − (qj−1q

T
j−1)Aqj

qj+1 = rj+1/βj.

That is, qj+1 is exactly what we compute if we orthogonalize Aqj against the
vectors qj and qj−1. Note that Aqj is automatically orthogonal to q1, . . . , qj−2,
since qTkAqj = Tkj is zero for k < j − 1.

This process of incrementally producing an orthonormal basis by mul-
tiplying the last vector by A and orthogonalizing the result against what
came before gives us the basic Lanczos procedure. If we start with q1 = e1,
the Lanczos procedure will give us the same T matrix1 as the Householder

1 Well, almost the same T matrix. Note that the off-diagonal elements βj might be
positive or negative in the Householder tridiagonalization, but they are always positive in
the Lanczos algorithm. However, the two T matrices satisfy a similarity relation with a
diagonal matrix whose diagonal entries are ±1.

Bindel, Fall 2012 Matrix Computations (CS 6210)

algorithm, at least in exact arithmetic. But while a step in the Householder
algorithm costs O(n2), the cost of a Lanczos step is a matrix-vector multiply
(which may cost less than O(n2) if A is sparse) followed by O(n) work in dot
products and gaxpy operations. Also, note that the Lanczos step requires
only a few vectors of intermediate storage.

In exact arithmetic, we could iterate until we found βk = 0, which would
correspond to having an invariant subspace spanned by {q1, . . . , qk}. Except
for very special choices of starting vectors, though, this would happen only
for k = n.

Partial tridiagonalization and Krylov subspaces

What happens when we run only a few steps of the Lanczos iteration? After
m steps, we have computed m columns of Q and m rows of T ; and there is
some hope that we might be able to use the leading m-by-m subblock of T
(i.e. the block Rayleigh quotient with the first m columns of Q) in order to
extract some useful information about the spectrum of A. The reason why we
might have such a hope is that we notice that the Krylov subspace spanned
by q1, . . . , qm is also spanned by the first m iterates of a power method:

Km(A, q1) = span{q1, q2, . . . , qm} = span{q1, Aq1, . . . , Am−1q1}.

As we have previously discussed, the power basis is not a particularly useful
basis for numerical computations, but it is useful for thinking about Krylov
subspaces. In particular, because it contains the mth vector produced by
power iteration starting from q1, we expect that the largest Ritz value as-
sociated with Km(A, q1) (i.e. the largest magnitude eigenvalue of the block
Rayleigh quotient (Q:,1:m)TAQ:,1:m) will be at least as large as the Rayleigh
quotient estimate produced by m steps of power iteration.

Of course, the Krylov subspace Km(A, q1) has a lot more information
than just the vector from step m of a power iteration. For example, notice
that if σ is any shift, then Km(A − σI, q1) = Km(A, q1); that is, Krylov
subspaces are shift invariant. This is relevant because adding a shift to A
can change which of the exterior eigenvalues in the spectrum is dominant. So
if λ1 ≥ λ2 ≥ . . . ≥ λn, then we expect to be able to extract good estimates to
λ1 and λn from a few steps of Lanczos iteration under the assumption that
power iteration with certain shifted matrices converges sufficiently fast.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Lanczos in inexact arithmetic

The observant reader will have noticed something unsettling about the ba-
sic Lanczos iteration: at the heart of the Lanczos iteration is a Gram-
Schmidt orthogonalization step, which we said in our discussion of QR fac-
torizations could become numerically unstable. In particular, when rk+1 =
(A − αk)qk + qk−1βk−1 is “small” (i.e. when βk is small relative to ‖A‖),
cancellation may cause the computed vector to consisty mostly of roundoff,
so that it is no longer orthogonal to the preceding vectors. But a small
value of βk corresponds exactly to convergence to a good approximation to
an invariant subspace! Thus, in floating point arithmetic, the basic Lanczos
iteration tends to run reasonably well until convergence, at which point it ef-
fectively restarts with a “random” starting vector which is made up primarily
of roundoff error. So we get convergence of the Ritz values of the computed
T to the first few exterior eigenvalues; and then more “ghost” Ritz values
converge to the first few exterior eigenvalues; and we continue on in this fash-
ion for as long as we are willing to let things run. This not state of affairs is
not entirely satisfactory, but we can fix it by re-orthogonalization: that is, we
improve the orthogonality of the computed basis by explicitly orthogonaliz-
ing Aqk against vectors to which it should already be orthonormal in exact
arithmetic. One approach is to use complete orthogonalization: compute Aqj
and then orthogonalize against all previous vectors (e.g. by a sequence of
Householder transformations). This is expensive in terms of storage (and
data movement) and arithmetic, but it does work. A less expensive solution,
selective orthogonalization, involves orthogonalizing against converged eigen-
vector estimates (Ritz vectors). In the interest of time, we will not discuss
reorthogonalization further. If you are interested, though — or if you are
interested in any number of other aspects of Lanczos iteration that we skip
over — I recommend looking at Parlett’s book The Symmetric Eigenvalue
Problem. Stewart’s book Matrix Algorithms, Vol 2: Eigensystems also has a
nice treatment.

Why did numerical instability not arise when we discussed CG? It’s there
behind the scenes, and it explains why running CG for n steps generally
does not provide the exact answer to a linear system. But nobody sensible
uses CG as a direct method anyhow; it is used as an iterative solver, and it
turns out that the loss of orthogonality does not matter that much to the
CG iteration continuing to make progress.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Partial tridiagonalization and residual bounds

Suppose AQ = QT , where Tii = αi, Ti,i+1 = βi. If we take m steps of
Lanczos iteration, we generate Q:,1:m =

[
q1 q2 . . . qm

]
as well as the first

m coefficients (αi)
m
i=1 and (βi)

m
i=1. Let us denote Qm and Tm as the leading

m columns of Q and the leading m × m submatrix of T respectively; then
writing the first m columns of AQ and QT gives us

(1) AQm = QmTm + βmqm+1e
T
m.

Here Tm is a block Rayleigh quotient Tm = QT
mAQm, and the eigenvalues

of Tm (the Ritz values) are used to approximate the eigenvalues of A. Now
consider the eigendecomposition Tm = YΘY T where Y TY = I and Θ =
diag(θ1, . . . , θm). Then postmultiplying (1) by Y gives

AQmY = QmYΘ + βmqm+1e
T
mY.

The columns of Z = QmY =
[
z1 . . . zm

]
are approximate eigenvalues cor-

responding to the approximate eigenvalues θ1, θ2, . . . , θm. For each column,
we have

Azk − zkθk = βmqm+1e
T
myk,

which means
‖Azk − zkθk‖2 = |βm||eTmyk|.

This is useful because, as we discussed before, in the symmetric case a small
residual error implies a small distance to the closest eigenvalue. This is also
useful because the residual error can be computed with no further matrix op-
erations — we need only to look at quantities that we would already compute
in the process of obtaining the tridiagonal coefficients and the corresponding
Ritz values. In particular, note that we can compute the residual for the Ritz
pair (approximate eigenpair) (zk, θk) without explicitly computing zk!

The polynomial connection

Suppose λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A, with corresponding
eigenvectors w1 through wn. In matrix form, then,

A = WΛW T .

Bindel, Fall 2012 Matrix Computations (CS 6210)

Now, suppose we run m steps of Lanczos iteration (in exact arithmetic),
and let θ1 be the largest eigenvector of Tm (the largest Ritz value). This is
the same as saying that θ1 maximizes the Rayleigh quotient over the Krylov
subspace Km(A, q1):

θ1 = max
y∈Rm

yTTmy

yTy
= max

y∈Rm

(Qmy)TA(Qmy)

(Qmy)T (Qmy)
= max

z∈Km(A,q1)

zTAz

zT z
.

Now, any vector z ∈ Km(A, q1) can be written as

z = c0q1 + c1Aq1 + . . .+ cm−1A
m−1q1 = p(A)q1,

where p is a polynomial of degree at most m− 1. Thus,

θ1 = max
deg(p)<m

qT1 p(A)Ap(A)q1
qT1 p(A)2q1

.

This is still somewhat awkward, so let us rewrite things in terms of the
eigenvector basis. Define d = ZT q1; then

θ1 = max
deg(p)<m

dTp(Λ)Λp(Λ)d

dTp(Λ)2d
= max

deg(p)<m

∑n
i=1 d

2
i p(λi)

2λi∑n
i=1 d

2
i p(λi)

2
.

Let’s give a name to the function in this maximization:

φ(p) =

∑n
i=1 d

2
i p(λi)

2λi∑n
i=1 d

2
i p(λi)

2
= λ1−

∑n
i=2 d

2
i p(λi)

2(λ1 − λi)∑n
i=1 d

2
i p(λi)

2
≥ λ1−(λ1−λn)

∑n
i=2 d

2
i p(λi)

2

d21p(λ1)
2

.

We know that θ1 = maxdeg(p)<m φ(p) ≤ λ1; we would also like a lower bound
on θ1. If we can show that this lower bound approaches λ1 at some rate with
increasing m, then we know θ1 will converge to λ1 at least as fast.

Note that if we found a polynomial that was zero at λ2, . . . , λn and nonzero
at λ1, then we would recover λ1 exactly. But such a polynomial usually has
too high a degree. What we would like in order to get a bound, then, is a
degree m polynomial which is not too big on [λ2, λn], but is relatively large
at λ2. Having seen it’s appearance in our analysis of Chebyshev iteration
and CG, you will not be surprised that a good candidate is our old friend,
the rescaled Chebyshev polynomial.

T̂k(x) = Tk

(
−1 + 2

x− λn
λ2 − λn

)
.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Note that |T̂k(λj)| ≤ 1 for j > 1 and |T̂k(λ1)| grows rapidly with k.
Note that for any p, we have

φ(p) = λ1 −
∑n

i=2 d
2
i p(λi)

2(λ1 − λi)∑n
i=1 d

2
i p(λi)

2

≥ λ1 − (λ1 − λn)

∑n
i=2 d

2
i p(λi)

2

d21p(λ1)
2

.

Now, note that
∑n

i=1 d
2
i = ‖d‖22 = ‖q1‖22 = 1, that T̂m−1(λi)

2 ≤ 1 for i =

2, . . . , n and that T̂m−1(λ1) = Tcm−1(1 + 2ρ1). Thus,

φ(ĉm−1) ≥ λ1−(λ1−λn)

∑n
i=2 d

2
i T̂m−1(λi)

2

d21T̂m−1(λ1)
2
≥ λ1−(λ1−λn)

1− d21
d21Tm−1(1 + 2ρ1)2

.

The entry d1 = wT
1 q1 is the cosine of the angle φ1 between the first eigenvector

w1 and the starting vector q1; so we can write (1− d21)/d21 = tan(φ1)
2, which

gives us the final bound

λ1 ≥ θ1 = max
deg p<m

φ(p) ≥ φ(ĉm−1)λ1 −
(λ1 − λn) tan(φ1)

2

Tm−1(1 + 2ρ1)2
.

where ρ1 = (λ1 − λ2)/(λ2 − λn).
We notice a few things from this bound. The rate of convergence (deter-

mined by Tm−1(1 + 2ρ1)
2) is strictly better than the rate of convergence for

power iteration, which makes sense since we are using strictly more informa-
tion in the Lanczos iteration than we use in the power iteration (we maximize
over an m-dimensional subspace rather than a 1-dimensional space). Also,
the trick involved is a good one: instead of reasoning about matrices, reason
about polynomials. But, as with our analysis of CG, this bound may be very
pessimistic, since it does not take into account the distribution of eigenvalues
in [λ2, λn]. For example, if many eigenvalues of A cluster near zero (as hap-
pens with certain discretizations of compact operators, for instance), then
we might get much better convergence than indicated by a basic bound that
works for any distribution of eigenvalues between [λ2, λn].

