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Week 14: Monday, Nov 19

Convergence of CG

In exact arithmetic, the basic conjugate gradient algorithm computes ap-
proximate solutions to Ax = b by minimizing ‖ek‖A = ‖xk − x‖ where
xk ∈ Kk(A, b). Because xk is an element of a Krylov subspace, we can write

xk = pk−1(A)b

where pk−1 is a polynomial of degree k − 1. The error is then

ek = pk−1(A)b− A−1b = p̂k(A)e0,

where p̂k(z) = 1− zpk−1(z) and e0 = x0−A−1b = A−1b. That is, the error at
step k corresponds to choosing p̂k(x) such that p̂(0) = 1 to minimize ‖ek‖A.
Using the decomposition A = QΛQT , we have

‖ek‖2
A = (p̂k(A)e0)TA(p̂(A)e0)

= eT0Qp̂k(Λ)Λp̂k(Λ)QT e0

= ‖p̂(Λ)ẽ0‖Λ

≤ ‖p̂(Λ)‖2
2 ‖ẽ0‖2

Λ = max
j
p̂(λj)

2 ‖e0‖2
A,

where ẽ0 = QT e0. Thus, we can obtain a bound by finding a family of
polynomials with constant coefficient 1 that are small on a set containing the
spectrum of A. This is exactly the same tactic we used when we looked at
the convergence of the Lanczos iteration, and a similar argument involving
Chebyshev polynomials leads us to the following theorem.

Theorem 1. After k steps of conjugate gradient,

‖ek‖A ≤ 2‖e0‖A
(√

κ− 1√
κ+ 1

)k

,

where κ = κ2(A).

As was the case with the Lanczos iteration, though, a general-purpose
convergence theorem for conjugate gradients is of limited usefulness because
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it makes no particular assumptions about the spectrum of A. In many prac-
tical problems, the convergence of the method is irregular, and depends on
the distribution of eigenvalues of A, on the details of the right hand side
vector b, and on the vagaries of floating point arithmetic.

On the other hand, consider the case when the eigenvalues of A are ar-
ranged in tight clusters. If there are k clusters, then we can find a degree
k polynomial such that p̂k(λj) is small on every cluster, and the conjugate
gradient method may show very rapid convergence. For some problems (e.g.
discretizations of second-kind integral equations), the matrix A does indeed
have tight clusters of eigenvalues; in other cases, we can find a preconditioner
such that the eigenvalues of the preconditioned problem are clustered.

GMRES

In the case whereA is a nonsymmetric matrix, it is possible to solveAx = b by
applying CG to the normal equations ATAx = AT b. Unfortunately, the con-
dition number of ATA is the square of the condition number of A, and conse-
quently convergence of the CGNE (conjugate gradient on normal equations)
method may be slow. A frequently-used alternative is the Generalized Min-
imal Residual (GMRES) method, which selects from each Krylov subspace
Kk(A, b) an approximate solution xk that minimizes ‖rk‖2 = ‖b− Axk‖2.

By running the Arnoldi process, we can compute a matrix Qk whose
columns form an orthonormal basis for Kk(A, b), so that xk = Qkyk. If we
start the Arnoldi process with q1 = b/‖b‖, we have

rk = b− AQkyk = ‖b‖q1 −Qk+1H̃k+1yk,

where H̃k+1 ∈ R(k+1)×k is the leading part of a Hessenberg matrix. Therefore,

yk minimizes
∥∥∥ ‖b‖e1 − H̃k+1yk

∥∥∥
2
. Because H̃k+1 is upper Hessenberg, we

can apply a QR factorization to H̃k+1 and solve the resulting linear system
for yk in O(k2) time.

In practice, the cost of storing and computing with the Arnoldi basis Qk

becomes prohibitively expensive once k gets too large. Therefore, GMRES
is usually performed with restarting. That is, after some number of steps —
ten or twenty, perhaps — one computes the best approximate solution x̂ and
restarts the procedure to solve the residual equation A(x − x̂) = r, where
r = b− Ax̂
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Though preconditioned conjugate gradients and GMRES with restarts are
among the most popular Krylov subspace methods, there are many others.
A good place to read more is the Templates book.

http://www.netlib.org/linalg/html_templates/Templates.html

