
Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 13: Wednesday, Nov 14

Some minimization problems

Last time, we sketched the following two-step strategy for approximating the
solution to linear systems via Krylov subspaces:

1. Build a sequence of Krylov subspaces, either the obvious Km(A, b) or a
“preconditioned” space Km(M−1A,M−1b), possibly derived from look-
ing at iterates of a promising stationary method.

2. Choose a criterion to extract an approximate solution from each space.

Let us now turn to the problem of choosing a good solution from a subspace
Vm in the case when A is symmetric and positive definite. The following four
equivalent criteria seem rather natural, and are the basis for the conjugate
gradient method:

1. Define a function

φ(z) =
1

2
zTAz − zT b.

This function is convex (the Hessian A is positive definite), and has a
unique global minimum at x = A−1b:

∇φ(x) = Ax− b = 0.

One way to choose the solution xm ∈ Vm is therefore to minimize φ
over the subspace Vm.

2. If xm minimized φ over the subspace Vm, that means that the direc-
tional derivative vT∇φ(xm) = vT (Axm−b) must be zero for all v ∈ Vm.
Put differently, the residual Axm − b must be orthogonal to Vm. This
is a Galerkin condition.

3. Given xm ∈ Vm, write the error em = xm − x. Note that A defines an
inner product and an associated norm ‖z‖2A = zTAz. Measuring em in
this norm gives

‖em‖2A = (xm−x)TA(xm−x) = xTmAxm−2xTmb+x
TAx = 2φ(xm)+‖x‖2A.

Therefore, minimizing ‖em‖2A is equivalent to minimizing φ(xm).



Bindel, Fall 2012 Matrix Computations (CS 6210)

4. Just as A denotes an inner product, so does A−1; and if we write
rm = Axm − b = Aem, we have

‖em‖2A = eTmAem = (Aem)TA−1(Aem) = rTmA
−1rm = ‖rm‖2A−1 .

Therefore, minimizing ‖rm‖2A is equivalent to minimizing φ(xm).

The Lanczos connection

When we introduced Krylov subspaces, we described them in terms of the
power basis:

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.
Unfortunately, as k grows larger, the vectors in the power basis all start
looking like the dominant eigenvector of A! While the power basis is fine for
analysis, it is too ill-conditioned to be of much practical computational use.

There is a simple alternative procedure to get orthonormal bases for the
Krylov subspaces: interleave multiplication by A with Gram-Schmidt orthog-
onalization. That is, start with

v0 =
b

‖b‖

and then generate successive vectors by

ṽk+1 = Avk −
k∑

j=0

vjv
T
j Avk

vk+1 = ṽk+1/‖ṽk+1‖.

It is not hard to see that v0, . . . , vk−1 are an orthonormal basis for the kth
Krylov subspace. What may be less obvious is that most of the coefficients
vTj Avk in the Gram-Schmidt process turn out to be zero! We know that vk
is orthogonal to everything in the Kk(A, b) Krylov subspace, and Avj lives
in Kj+1(A, b); so if j ≤ k − 1, then vTj Avk = 0. Thus, the Lanczos process
turns out to be a very simple three-term recurrence:

βk+1vk+1 = Avk − αkvk − βkvk−1,

where the αk and βk coefficients come out of the Gram-Schmidt process. In
code, we have:



Bindel, Fall 2012 Matrix Computations (CS 6210)

function [alpha, beta] = lec35lanczos(A,q1,btol,kmax);

%

% Run a basic Lanczos iteration until either beta_k < btol

% or k == kmax.

k = 0;

qk = 0;

r = q1;

b = 1;

while (b > btol) & (k < kmax)

k = k+1;

qkm1 = qk;

qk = r/b;

Aqk = A*qk;

alpha(k) = qk’*Aqk;

r = Aqk-qk*alpha(k)-qkm1*b;

b = norm(r);

beta(k) = b;

end

Note that the Gram-Schmidt procedure is numerically unstable, and thus
the Lanczos procedure in floating point does not behave quite like it does in
exact arithmetic. However, the numerical instability manifests when βk+1 is
relatively small, a point which we will bring up again when we talk about
using Lanczos for solving eigenvalue problems.

Suppose now that the columns of Vm form an orthonormal basis for the
Krylov subspace Km(A, b) produced via the Lanczos process. If we choose
xm = Vmym so that the residual is orthogonal to every vector in Km(A, b)
(point 2 above), then we have

V T
m (Axm − b) = V T

mAVmym − V T
m b = Tmym − βe1 = 0,

where Tm is the tridiagonal matrix produced by the Lanczos process, and
V T
m b = βe1 because the first column of Vm is proportional to b. We can solve

for ym by writing an unpivoted LU factorization of Tm, which gives us

xm = VmU
−1
m L−1

m ym,

and then note that if Pm = VmU
−1
m and zm = L−1

m ym, we can extend to Pm+1

by appending a column to Pm via a simple recurrence, and we can extend to



Bindel, Fall 2012 Matrix Computations (CS 6210)

zm+1 by appending an entry to zm. This is one way to derive the conjugate
gradient iteration; see the Lanczos chapter in Golub and Van Loan or the
derivation in Demmel.

Another approach to CG

An alternate approach to the conjugate gradient method does not directly
invoke Lanczos, but instead relies on properties that must be satisfied at
each step by the residual rm = b − Axm and the update dm = xm+1 − xm.
We assume throughout that xm is drawn from Km(A, b), which implies that
rm ∈ Km+1(A, b) and dm ∈ Km+1(A, b).

First, note that rm ⊥ Km(A, b) and dm ⊥A Km(A, b).1 The former state-
ment comes from the Galerkin criterion in the previous section. The latter
statement comes from recognizing that rm+1 = Adm + rm ⊥ Km(A, b); with
Galerkin condition rm ⊥ Km(A, b), this means Adm ⊥ Km(A, b). Together,
these statements give us rm and dm to within a scalar factor, since there is
only one direction in Km+1(A, b) that is orthogonal to all of Km(A, b), and
similarly there is only one direction that is A-orthogonal. This suggests the
following idea to generate the sequence of approximate solutions xk:

1. Find a direction pk−1 ∈ Kk(A, b) that is A-orthogonal to Kk−1(A, b).

2. Compute xk = xk−1 + αkpk−1 so that

rk = rk−1 − αkApk−1 ⊥ rk−1,

i.e. set αk = (rTk−1rk−1)/(p
T
k−1Apk−1). Orthogonality to the rest of

Kk(A, b) follows automatically from the construction.

3. Take rk ∈ Kk+1(A, b) andA-orthogonalize against everything inKk(A, b)
to generate the new direction pk. As with the Lanczos procedure, the
real magic in this idea is that we have to do very little work to generate
pk from rk. Note that for any j < k−1, we have pTj Ark = (Apj)

T rk = 0,
because Apj ∈ Kj+2(A, b) ⊂ Kk(A, b) is automatically orthogonal to rk.
Therefore, we really only need to choose

pk = rk + βpk−1,

1 u ⊥A v means u and v are orthogonal in the A-induced inner product, i.e. uTAv = 0.



Bindel, Fall 2012 Matrix Computations (CS 6210)

such that pTk−1Apk, i.e. βk = −(pTk−1Ark)/(pTk−1Apk−1). Note, though,
that Apk−1 = −(rk − rk−1)/αk; with a little algebra, we find

βk = − rTkApk
pTk−1Apk−1

=
(rTk rk)/αk

rTk−1rk−1/αk

=
rTk rk

rTk−1rk−1

.

Putting everything together, we have the following coupled recurrences
for the solutions xk, residuals rk, and search directions pk:

αk = (rTk−1rk−1)/(p
T
k−1Apk−1)

xk = xk−1 + αkpk−1

rk = rk−1 − αkApk−1

βk = (rTk rk)/(rTk−1rk−1)

pk = rk + βkpk−1.

The sequences rk and pk respectively form orthogonal and A-orthogonal bases
for the nested Krylov subspaces generated by A and b.

The many approaches to CG

The description I have given in these notes highlights (I hope) how orthogo-
nality of the residuals and A-orthogonality of search directions follows natu-
rally from the Galerkin condition, and how the rest of the CG iteration can
be teased out of these orthogonality relations. However, this is far from the
only way to “derive” the method of conjugate gradients. The discussion given
by Demmel and by Saad (in Iterative Methods for Sparse Linear Systems)
highlights the Lanczos connection, and uses this connection to show the ex-
istence of A-orthogonal search directions. Golub and Van Loan show the
Lanczos connection, but also show how conjugate gradients can be derived
as a general-purpose minimization scheme applied to the quadratic function
φ(x). Trefethen and Bau give the iteration without derivation first, and then
gradually explain some of its properties. If you find these discussions con-
fusing, or simply wish to read something amusing, I recommend Shewchuk’s
“Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

