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Beyond stationary methods

So far, we have discussed stationary iterative methods that produce a se-
quence of approximations

Mx(k+1) = Kx(k) + b,

where A = M − K is some splitting. The error in these methods behaves
like

e(k) = Rke(0),

and asymptotically, the dominant component of the error points in the direc-
tion of the dominant eigenvector of R. Given that the errors are asymptot-
ically become correlated with each other in a very systematic way, it seems
reasonable that we could “cancel off” some of the error by taking a linear
combination of the guesses x(k). That is, we could try something like

x̃(m) =
m∑
k=0

γmkx
(k)

where the coefficients γmk sum to one. Note that

x̃(m) − x =
m∑
k=0

γmk(x
(k) − x) =

m∑
k=0

γmkR
ke(0) = pm(R)e(0),

where

pm(z) =
m∑
k=0

γmkz
k

is a polynomial normalized so that pm(1) = 1.
Now, if we knew all the eigenvalues R, we could take pn to be the char-

acteristic polynomial of R in order to get pn(R)e(0) to be zero. There are
just two problems with this approach. The first is that we generally don’t
know all the eigenvalues of the iteration matrix. The second is that even if
we did know all the eigenvalues, applying the inverse via the characteristic
polynomial would take O(N) steps, and we would like to get a good answer
in far fewer steps than that.
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Let us now consider the special case of a stationary iteration in which
R is symmetric. We may not be able to say where all the eigenvalues of
R are, but we can frequently give some bound on the spectral radius, i.e.
ρ(R) ≤ α < 1. In this case, we can bound

‖p(R)‖ ≤ max
z∈[−α,α]

|p(z)|,

so a reasonable way to choose polynomials is to make pm(z) the polynomial
of degree m that minimizes the maximum of |pm(z)| on [−α, α] subject to
pm(z) = 1. The solution to this problem is the scaled Chebyshev polynomial

pm(z) =
Tm(z/α)

Tm(1/α)
,

The Chebyshev polynomials Tm are defined by the recurrence

T0(x) = 1

T1(x) = x

Tm+1(x) = 2xTm(x)− Tm−1(x), m ≥ 1.

The Chebyshev polynomials have a number of remarkable properties, but
perhaps the most relevant in this setting is that

Tm(x) =

{
cos(m cos−1(x)), |x| ≤ 1,

cosh(m cosh−1(x)), |x| ≥ 1
.

Thus, Tm(x) oscillates between ±1 on the interval [−1, 1], and then grows
very quickly outside that interval. In particular,

Tm(1 + ε) ≥ 1

2
(1 +m

√
2ε).

Thus, we have that for z ∈ [−α, α],

pm(z) ≤ 2

1 +m
√

2/(1− α)
= 2(1−m

√
2(1− α)) +O(m2(1− α)).

Thus, where the number of steps for the basic stationary iteration to converge
scales like (1−ρ(R))−1, the number of steps for the Chebyshev semi-iteration
to converge scales like (1 − α)−1/2. On the model problem, this means we
can accelerate Jacobi or symmetric Gauss Seidel from O(N2) to O(N3/2)
time with this approach, and we can scale SOR with a well-chosen relaxation
parameter from O(N3/2) to O(N5/4).
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Krylov subspaces

There were two ingredients to the Chebyshev semi-iteration:

1. Generate a space in which we expect to find good approximate solu-
tions.

2. Pull an “optimal” solution out of that space.

If we look at the iterations generated from a stationary iterative method
with the initial guess x(0) = 0, we have

x(1) = c,

x(2) = Rc+ c,

x(3) = R2c+Rc+ c,

x(4) = R3c+R2c+Rc+ c,

and so on. In general, the things we can form from {x(1), . . . , x(k)} live in the
kth Krylov subspace generated by R and c:

Kk(R, c) = span{c, Rc, . . . , Rk−1c} = {p(R)c : p ∈ Pk−1},

where Pk−1 is the space of polynomials of degree at most k − 1.
As it happens, Krylov subspaces make a reasonable choice of approx-

imation spaces even when they are generated by something other than a
contraction mapping. In general, preconditioned Krylov subspace methods
draw approximations from Kk(M−1A,M−1b).


