
Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 12: Friday, Nov 9

Iterative methods for the 2D model problem

On Wednesday, we got as far as discussing the cost of various direct methods
for the model problem. This time, let’s discuss iterative methods.

By nature, an iterative method produces a (hopefully convergent) se-
quence of approximations to the true answer to a problem. So what do
we mean when, for example, we write that Jacobi iteration “solves” the 2D
model problem in O(N2) time? When we talk about solution time, by con-
vention, we mean the time to solution as the time to reduce the initial error
by some constant factor. For convenience, that constant factor is generally
1/e. A stationary method which multiplies the error by R at each step will
asymptotically multiply the error at each step by ρ(R), so after k steps of
the iteration, the error typically behaves like

‖ek‖ ≤ C‖e0‖ρ(R)k

and the time to reduce the error to e−1 behaves like

k∗ =
−1− log(C)

log(ρ(R))
= O(log(ρ(R))−1)

and if δ = 1− ρ(R) is small, then

− log(ρ(R))−1 = δ−1 +O(1).

Thus, we will generally say the “number of iterations to convergence” for an
iterative method is O(δ−1).

In the case of the 2D model problem, recall that the eigenvalues are

λi,j = 2 (2− cos(πih)− cos(πjh))

The extreme eigenvalues are

λ1,1 = 2h2π2 +O(h4)

and
λn,n = 4− 2h2π2 +O(h4).



Bindel, Fall 2012 Matrix Computations (CS 6210)

The diagonal of Tn×n is simply 4I, so the Jacobi iteration matrix looks like

R =
1

4
(4I − Tn×n),

for which the eigenvalues are

λi,j(R) = −(cos(πih) + cos(πjh))/2,

and the spectral radius is

ρ(R) = cos(πh) = 1− π2h2

2
+O(h4)

Thus, the number of iterations to reduce the error by 1/e scales like

2

π2h2
=

2

π2
(n+ 1)2 = O(N);

and since each step takes O(N) time, the total time to reduce the error by a
constant factor scales like O(N2).

The successive overrelaxation iteration uses a splitting

M = ω−1(D − ωL̃) = ω−1D−1(I − ωL),

which yields an iteration matrix

RSOR = (I − ωL)−1((1− ω)I + ωU).

In general, this is rather awkward to deal with, since it is a nonsymmetric
matrix. However, for the model problem with a particular ordering of un-
knowns (red-black ordering), one has that the eigenvalues µ of RJ correspond
to the eigenvalues λ of RSOR via

(λ+ ω − 1)2 = λω2µ2.

For the case ω = 1 (Gauss-Seidel), this degenerates to

λ = µ2,

and so ρ(RGS) = ρ(RJ)2. Consequently, each Gauss-Seidel iteration reduces
the error by the same amount as two Jacobi iterations, i.e. Gauss-Seidel
converges twice as fast on the model problem. This tends to be true for other
problems similar to the model problem, too. However, going from Jacobi
to Gauss-Seidel only improves the convergence rate by a constant factor; it
doesn’t improve the asymptotic complexity at all. However optimal ω (about
2−O(h)) gives us a spectral radius of 1−O(h) rather than 1−O(h2), allowing
us to accelerate convergence to O(N3/2).



Bindel, Fall 2012 Matrix Computations (CS 6210)

Red-black ordering

For Gauss-Seidel and SOR methods, the order in which the variables are pro-
cessed matters. One order, the red-black order, turns out to be particularly
convenient for both analysis and implementation. To motivate the red-black
order, think of a checkerboard. Each red square only has black squares to
its north, south, east, and west; similarly, each black square is only adjacent
to red squares. If we are thinking about doing Gauss-Seidel, then, it is con-
venient to similarly color nodes red or black depending on whether i + j is
even or odd, then process all the red squares first followed by all the black
squares. Because no red node depends on information from any other red
node, the red nodes can be processed in any order without changing results;
they just have to be processed before the black nodes. Similarly, the black
nodes can be processed in any order, followed by the red nodes.

The red-black ordering can be convenient for parallel implementation,
because allowing the red nodes (or black nodes) to be processed in any orer
gives more flexibility for different scheduling choices. But it is also a use-
ful choice for analysis. For example, in the red-black ordering, the model
problem looks like

A =

[
4I B
BT 4I

]
The preconditioner based on Jacobi iteration is

MJ =

[
4I 0
0 4I

]
,

which results in the iteration matrix

RJ = M−1
J (MJ − A) =

1

4

[
0 B
BT 0

]
.

The eigenvalues of RJ are thus plus or minus one quarter the singular values
of B. Note that this much would have been the same for more general
problems with the same structure!

I did not drag you in class through the rest of the analysis, and I would
not expect you to repeat it on an exam. Nonetheless, it may be worth writing
it out in order to satisfy the curious. The preconditioner for Gauss-Seidel is

MGS =

[
4I 0
BT 4I

]
;



Bindel, Fall 2012 Matrix Computations (CS 6210)

and because of the relatively simple form of this matrix, we have

M−1
GS =

1

4

[
I 0

BT/4 I

]
.

The iteration matrix for Gauss-Seidel is

RGS = M−1
GS(MGS − A) =

[
0 B/4
0 − 1

16
BTB

]
,

which has several zero eigenvalues together with some eigenvalues that are
minus 1/16 times the squared singular values of BTB. Thus, as indicated
earlier, the spectral radius of RGS is the square of the spectral radius of RJ

(for the model problem).
The analysis for the general SOR case is slightly messier, but I’ll include

it here for completeness. The preconditioner is

MSOR =
1

ω

[
4I 0
ωBT 4I

]
,

and the inverse is

M−1
SOR =

ω

4

[
I 0

−ωBT/4 I

]
,

The iteration matrix is

RSOR =
1

4

[
I 0

−ωBT/4 I

] [
4(1− ω)I −ωB

0 4(1− ω)I

]
=

[
(1− ω)I −ωB/4

−(1− ω)ωBT/4 ω2BTB/16 + (1− ω)I

]
.

If λ is any eigenvalue of RSOR except 1 − ω, we can do partial Gaussian
elimination on the eigenvalue equation

(RSOR − µI)v = 0;

after eliminating the first block of variables, we have the residual system(
ω2

16
BTB − (λ+ ω − 1)I − (1− ω)ω2

16
BT ((1− ω − λ)I)−1B

)
v2 = 0,

Refactoring, we have[(
1− ω

λ+ ω − 1
+ 1

)
ω2

16
BTB − (λ+ ω − 1)I

]
v2 = 0.



Bindel, Fall 2012 Matrix Computations (CS 6210)

From our earlier arguments, letting µ be an eigenvalue of the Jacobi matrix,
we know that µ2 is an eigenvalue of BTB/16. The corresponding eigenvalues
λ of RSOR must therefore satisfy(

1− ω
λ+ ω − 1

+ 1

)
ω2µ2 − (λ− ω − 1) = 0.

Multiplying through by λ− ω − 1, we have

(1− ω + λ+ ω − 1)ω2µ2 − (λ− ω − 1)2 = 0

or
λω2µ2 = (λ− ω − 1)2,

which is the formula noted before.


