Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 12: Wednesday, Nov 7

The 1D model problem

As we noted in the last lecture, it’s difficult to say many useful things about
the convergence of iterative methods without looking at a concrete prob-
lem. Therefore, we will set the stage with a very specific model problem: a
discretization of the Poisson equation. We start with the one-dimensional
case.

The continuous version of our model problem is a one-dimensional Poisson
equation with homogeneous Dirichlet boundary conditions:

d*u
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u(0) =0
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Let z; = j/(n+1) for j = 0,1,...,n + 1 be a set of mesh points. We
can approximate the second derivative of v at a point by a finite difference
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where h = 1/(n+ 1) is the mesh spacing. If we replace the second derivative
in the Poisson equation with this finite-difference approximation, we have a
scheme for computing u; ~ u(zx;):

_Uj—l —+ 2U] — Uj,1 = hzf] for 1 S] S n
Uy = 0

Unp4+1 = 0

We can write this approximation as a matrix equation Tu = h%f, where
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Part of what makes this simple Poisson discretization so appealing as
a model problem is that we can compute the eigenvalues and eigenvectors
directly. This is because solving the (T'— \)y = 0 is equivalent to considering
the constant coefficient difference equation

Vg1 — (2= N + -1 =0

subject to the boundary conditions ¢y = 1,,.1 = 0. Solutions to this differ-
ence equation must have the form

wk’ = agk: + B§k7

where ¢ and ¢ are the roots of the characteristic polynomial p(z) = 22 — (2 —
Az + 1. For 0 < A < 4, these roots form a complex conjugate pair, each
with unit magnitude; that is, we can write £ = exp(if)) for some 6, and so

&8 = exp(ikf) = cos(k) + isin(k6).
Thus, any solution to the difference equation must have the form
Yy, = 7y cos(kB) + psin(k0).

Plugging in the boundary conditions, we find that v =0, and 6 = Ir/(n+1)
for some [. Thus, the normalized eigenvectors of T" are z; with entries

[ 2 [ jkm 2
zi(k) = n+1sm(n+1),: n+1Sln((j7T)Ik)

and the corresponding eigenvalues are
mj
n+1)°

A= h(rj)*+ O (h4(7rj)4) )

/\j:2(1—cos

For j < n, Taylor expansion gives that

By way of comparison, the continuous Dirichlet eigenvalue problem

d*w

—y = M, w(0) =w(l) =0
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has eigenfunctions of the form
wy = sin(jre), gy = (r)

Thus, the eigenvectors of h=2T are exactly the sampled eigenfunctions of
—d?/dz* on [0,1] with Dirichlet boundary conditions, while the extremal
eigenvalues of h=2T satisfy

W72\ = py + O(5h?).

The 2D model problem

The problem with the 1D Poisson equation is that it doesn’t make a terribly
convincing challenge — since it is a symmetric positive definite tridiagonal,
we can solve it in linear time with Gaussian elimination! So let us turn to
a slightly more complicated example: the Poisson equation in 2D. Before
discussing the 2D Poisson equation, though, let us digress to introduce two
useful notations: the vec operator and the Kronecker product.

The vec operator simply lists the entries of a matrix (or an array with
more than two indices) in column-major order; for example,

a
wlt 9=
c d b

d

The Kronecker product A ® B of two matrices is a block matrix where each
block is a scalar multiple of B:
(IHB (llgB
A® B = |anB axB

The Kronecker product and the vec operation interact with each other as
follows:
(B ® A) vec(C) = vec(ACBT).

The Kronecker product also satisfies the identities
(Ao B = AT @ BT
(A® B)(C x D) = (AB) ® (CD)
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which implies, for example, that the Schur form of a Kronecker product is a
Kronecker product of Schur forms:

(Ua®@Up) (A® B)(Us®@Up) =Ty @ Tp.

As one illustrative application of Kronecker products, consider the Sylvester
operator X — AX — X B. Using Kronecker products, we can write this as

vec(AX — XB)=(A® [ —1® B)vec(X).
Note that if A = UsTwU} and B = UgTU} are Schur forms, then
ARI - 1®@B=Us@Up)(Ta®I -12T)(Us® Up)*,

and Th ® [ — T ® I is an upper triangular matrix. This transformation,
followed by a triangular solve, is essentially what you did in problem 3 of
your last homework.

Now let us return to the model 2D Poisson discretization. This is an
approximation to the equation

’u  J%*u
— 2 - — — — p—
v (W y ay?) /

for (z,y) € (0,1)?, with Dirichlet boundary conditions u(z,y) = 0 for |z| = 1
or ly| = 1. If we discretize on a regular mesh with interior points indexed by
1 <i<nand1<j<n,wecan write the solution as a matrix U. When we
discretize, we have a partial derivative in x corresponding to acting across
columns of U, and a partial derivative in y corresponding to acting across
rows of U. We can write this operation as

TU + UT = Rh*F,

or as an ordinary matrix equation of dimension N = n?

(T®I1+1®T)vec(U) = h?vec(F).
What properties do we have for T,x, =T Q[ +1 R T7?
1. T,xn is symmetric and positive definite.
2. Thxn is (non-strictly) diagonally dominant.
3. If (25, A;) are the eigenpairs for T, those for T4, are (z; ® 2z, A\; + A;).

4. The condition number of T}, scales like O(h~2).
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Methods for solving the 2D model problem

Suppose we wanted to solve the 2D model problem in practice. What meth-
ods do we have at our disposal so far? Of course, we have several direct
methods

1.

We could run Gaussian elimination on T,,. This takes time O(N?),
where N = n?.

. The matrix T}, is also a banded matrix with bandwidth n so we could

do band Gaussian elimination at a cost of O(N?*n) = O(N%9).

. A sparse direct solve using nested dissection ordering runs in O(N!?).

Treating the problem as a Sylvester equation and running Bartels-
Stewart requires O(n?) time to find the eigensystem of 7" and to trans-
form U and F using the eigenvector matrix; and O(n?) time for the
subsequent (diagonal) linear solve.

The eigenvector matrix for T corresponds to a discrete sine transform,
which is closely related to the FFT; and we know the eigenvalues in

closed form. This allows us to reduce the time for Bartels-Stewart to
O(n?logn) = O(Nlog N).

What of the iterative methods? With appropriate parameter choices, the
time to reduce the error by a constant factor scales like[]

Jacobi N?
Gauss-Seidel N?
CG N3/2
SOR N3/2
SSOR with Chebyshev acceleration N°/4
Multigrid N

For both the direct and iterative methods, the more structure we use, the
faster we can go.

1See Table 6.1 of Applied Numerical Linear Algebra by J. Demmel.



