Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 12: Monday, Nov 5

Why iterative methods?

For many large linear systems, linear least squares problems, and eigenvalue
problems, it is impractically expensive to use the sorts of O(n?®) methods that
we have described so far. Even sparse direct methods may be too expensive,
depending on graph structure; as we mentioned earlier in the semester, these
methods tend to work well for 2D PDE discretizations, but they scale more
poorly for 3D problems, for example. Thus, we turn to iterative methods that
produce a sequence of ever better guesses to the true solution to a problem,
with some less-exorbitant cost per step. However, the potential speed ad-
vantages to using an iterative method come at a price: devising fast iterative
methods for linear systems often requires a much deeper understanding of the
underlying problem structure. Thus, while there are some good frameworks
for various types of iterative solvers, they tend not to be as robust to “black
box” uses as the direct solvers in LAPACK.

Stationary iterations

The oldest and simplest iterations for solving linear systems are stationary
iterations. These iterations have largely been supplanted by more sophisti-
cated methods (such as Krylov subspace methods), but they are still a useful
building block.

Stationary iterations are so named because the solution to a linear system
is expressed as finding the stationary point (fixed point) of some fixed-point

iteration
LR+ F<x(k))'

As is usually the case with fixed point iterations — linear or nonlinear —
the simplest way to establish convergence is generally to establish that the
mapping is a contraction, i.e.

[F(z) = F)l <alle—yll, o<l

The constant « then establishes the rate of convergence.
If we are solving a linear equation Ax = b, it generally makes sense to
choose a fixed point iteration where the mapping F' is affine. We can write

Bindel, Fall 2012 Matrix Computations (CS 6210)

any such fixed point iteration via a splitting of the matrix A, i.e. by writing
A =M — K with M nonsingular. Then we can rewrite Ax = b in the form

Mz = Kz +b,

or, equivalently,
r=x+M (b Ax).

The fixed point iteration is then
2) = MY Kz® 4 b) = 2 + M (b — Az®).
If we define R = M 'K, and ¢ = M, we can write the iteration as

2D = Re® 4 .

k) k)

and the error e = 2(*) — x obeys the iteration

e*) = Rel®),

A sufficient condition for convergence is then that ||R|| < 1 in some operator
norm. The actual necessary and sufficient condition is that p(R) < 1, where
the spectral radius p(R) is defined as max |\| over eigenvalues \ of R.

Richardson iteration

Perhaps the simplest stationary iteration is Richardson iteration, in which
M 1is chosen to be proportional to the identity:

Try1 = Tk + W(b — Aa;k)

The iteration matrix in this case is simply R = I — wA. As long as all the
eigenvalues of A have positive real part, Richardson iteration with a small
enough w will eventually converge — but that convergence may take a very
long time.

In the case that A is symmetric and positive definite, the eigenvalues of
R=1—wA are 1 —wA, where the \ are the eigenvalues of A. Since in this
case R is symmetric, ||R||2 is the largest singular value (largest eigenvalue
magnitude)

| R||2 = max(|1 — wAmax], |1 — WAmin|)-

Bindel, Fall 2012 Matrix Computations (CS 6210)

The rate of convergence is optimal when
|1 - W)\max‘ = ’1 - W)\min‘y

which occurs when w = 2/(Ajax + Amin)- In this case, the rate of convergence
in the 2-norm is determined by

2)\min -1 2
)\max +)\min B /{(A) + 1

Thus, if A is ill-conditioned, the iteration may be painfully slow.

[R[2=1-

Jacobi iteration

Jacobi iteration is usually introduced by talking about “sweeping” through
the variables and updating each one based on the assumption that the other
variables are correct. Component by component, we have

k41 k
a“xf +) -+ Zaijxg-) = bi,
J#L
Alternately, we can think of Jacobi’s iteration as taking M = D to be the
diagonal part of A. The iteration matrix in this case is

R=1—-D'A.

If A is strictly row diagonally dominant, then ||R||» < 1, and the iteration
converges.

When we discuss multigrid, we will also use as a building block the damped
Jacobi iteration where M = w™'D for some w < 1.

Gauss-Seidel iteration

For the Jacobi iteration, we think of using equation j to update variable
x; under the assumption that the old values for all neighboring variables
are correct. For the Gauss-Seidel iteration, we think of updating xq, zs, . . .,
and at each step using the most recent values of all the other variables for
updates. That is, we update according to

Z aijxg-kﬂ) + Z a,-jx;kﬂ) =b;.

1<t 7>

Bindel, Fall 2012 Matrix Computations (CS 6210)

If we write A = D—L—U = D(I— L—U) where —L and —U are the strictly
lower and upper triangular parts of A, then Gauss-Seidel corresponds to using
M = D(I — L), and the iteration operator is

R=(I-L'U

In the case of strict row diagonal dominance, ||R|l« < 1; in fact, if Rgs and
R are the iteration operators for Gauss-Seidel and Jacobi, then for strictly
row diagonally dominant A we have

|RGslloo < ||Rlloo < 1.

We can also show that Gauss-Seidel converges in the symmetric positive
definite case. Because the analysis technique will be relevant to some later
discussions, we will take a moment to describe the argument. If A is symmet-
ric positive definite, then the solution of Az = b is also the unique minimum
of the quadratic function

L 7 T
() = 57 Ax — b
Now suppose that = is an approximate solution, and we want to get a better
solution of the form ' = & + ae;. Note that

oé -+ ae) = o(a) + (oo + acl (4s 1))

which we can minimize by choosing
azio = el (b— Ax).
This exactly corresponds to the update
agz ™) 4 Z a ;P = b;.
J#i

Thus, Gauss-Seidel iteration can be seen as a coordinate-descent minimiza-
tion algorithm with exact line searches. Furthermore, note that if Ax = b
and £ = x + e is an approximation, then

8(#) = ola) + 3¢ Ae,

Bindel, Fall 2012 Matrix Computations (CS 6210)

SO

$(2) — ¢(z) = [lell%/2,
where ||e]|4 is the error in the “energy norm” induced by the positive defi-
nite matrix A. So in this case, the Gauss-Seidel iteration is monotonically
convergent in the norm associated with A.

In many practical cases, even those that are not strictly diagonally dom-
inant or symmetric and positive definite, Gauss-Seidel converges somewhat
faster than Jacobi. But proving this requires knowing something about the
structure of the problem. Outside of strictly row-diagonally dominant A,
there are examples where Jacobi converges and Gauss-Seidel does not, and
vice-versa.

Successive over-relaxation

If the Gauss-Seidel iteration gives us a good update, perhaps going even
further in the Gauss-Seidel direction would give an even better update. This
is the idea behind SOR (successive over-relaxation);

2D — (1 — w)z® + wx(ggl)

The case where w < 1 is called under-relazation; the case w > 1 is over-
relazation.

