Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 11: Friday, Nov 1

More minimax fun

Last time, we discussed the minimax theorem, and we stated (but did not
prove) the Cauchy interlace theorem. For completeness (since the proof is
only in Golub and Van Loan as a citation), let us give a straightforward proof
based on the minimax characterization:

Theorem 1. Suppose A is real symmetric (or Hermitian), and let W be a
matriz with m orthonormal columns. Then the eigenvalues of L = W*AW
interlace the eigenvalues of A; that is, if A has eigenvalues ay > ap > ... >
a, and W*AW has eigenvalues (3;, then

Bj € [n—m+j, ;).

Proof. Suppose A € C™™ and L € C™™. The matrix W maps C™ to
C", so for each k-dimensional subspace V C C™ there is a corresponding
k-dimensional subspace of WV C C". Thus,

By = e, (i, o)) = e, (i pa) < o

dim V=k \ 0#vey 0AveWY

and similarly

P = min max pr(v) | = min max pa(v
BJ dim V=m—k+1 (O#UGV/) ( )> dim V=m—k+1 <O#UEWV’0 ( ))

= min max v) | > a,_
dim V=n—(k+(n—m))+1 (075”UGWVpA< )) = Upn—m+k

O

Another application of the minimax theorem is due to Weyl: if we write
Ak (A) for the kth largest eigenvalue of a symmetric A, then for any symmetric

A and F,
M(A+ E) = XNe(A)] < B2
A related theorem is the Wielandt-Hoffman theorem:

Y A+ E) = A(4)? < || B3

i=1
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Both these theorems provide strong information about the spectrum relative
to what we have in the nonsymmetric case (e.g. from Bauer-Fike). Not only
do we know that each eigenvalue of A + FE is close to some eigenvalue of
A, but we know that we can put the eigenvalues of A and A + E into one-
to-one correspondence. So for the eigenvalues in the symmetric case, small
backward error implies small forward error!

As an aside, note that if v is an approximate eigenvector and A= pa(0)
for a symmetric A, then we can find an explicit form for a backward error E
such that

(A4 E)o = 0.

by evaluate the residual r = Av — v\ and writing £ = rv* + vr*. So in the
symmetric case, a small residual implies that we are near an eigenvalue. On
the other hand, it says little about the corresponding eigenvector, which may
still be very sensitive to perturbations if it is associated with an eigenvalue
that is close to other eigenvalues.

Inertia

In Lecture 14, we described the concept of inertia of a matrix. The inertia
v(A) is a triple consisting of the number of positive, negative, and zero
eigenvalues of A. Sylvester’s inertia theorem says that inertia is preserved
under nonsingular congruence transformations, i.e. transformations of the
form

M =VAVT.

Congruence transformations are significant because they are the natural
transformations for quadratic forms defined by symmetric matrices; and the
invariance of inertia under congruence says something about the invariance
of the shape of a quadratic form under a change of basis. For example, if A
is a positive (negative) definite matrix, then the quadratic form

o(z) = 27 Az

defines a concave (convex) bowl; and ¢(Vz) = 2T (VT AV)x has the same
shape.

As with almost anything else related to the symmetric eigenvalue prob-
lem, the minimax characterization is the key to proving Sylvester’s inertia
theorem. The key observation is that if M = VT AV and A has k positive
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eigenvalues, then the minimax theorem gives us a k-dimensional subspace W,
on which A is positive definite (i.e. if W is a basis, then 27 (WTAW)z > 0
for any nonzero z). The matrix M also has a k-dimensional space on which
it is positive definite, namely V1. Similarly, M and A both have (n — k)-
dimensional spaces on which they are negative semidefinite. So the number
of positive eigenvalues of M is k, just as the number of positive eigenvalues
of Ais k.

Solvers for the symmetric eigenvalue problem

Because the symmetric eigenvalue problem has so much structure, there are
many more good algorithms to solve it than there are for the nonsymmetric
problem. The QR iteration is still a good choice. Reduction to Hessenberg
form gives us a symmetric Hessenberg matrix 7' = QT AQ; the combination
of symmetry and Hessenberg shape means this matrix is tridiagonal. With
a proper shift strategy, QR iteration converges cubically for symmetric prob-
lems, and if only the eigenvalues are required, it costs O(n) time per step
subsequent to the initial tridiagonal reduction. There are even faster meth-
ods based on bisection (using the inertia of 7" — ¢/ to count the number of
eigenvalues greater and less than o) and based on divide-and-conquer ideas.
The fastest of these algorithms (the so-called “Grail”) can compute all the
eigenvalues of a tridiagonal matrix in O(n) time, and all the eigenvectors
in O(n?) — which is asymptotically optimal. By comparison, it takes O(n?)
time just to reduce a symmetric matrix to tridiagonal form!

We will not go into a great deal of detail, about these algorithms, but
will sketch some of the main ideas below.

Inertia and bisection

One of the useful aspects of inertia is that it can be computed without com-
puting eigenvalues. For any symmetric matrix, we can compute the factor-
ization

PAPT = LDL”

where L is unit lower triangular and D is diagonal. Because A and D are
congruent to each other, they have the same inertia.

By computing the LDL? factorization of A — oI, we find that we can
always count of the number of eigenvalues above and below any given shift.
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This suggests a bisection strategy for finding eigenvalues of A: to find all the
eigenvalues in some interval [a, (], recursively subdivide the interval until
each subinterval either contains no eigenvalues or exactly one eigenvalue.
For an interval that contains exactly one eigenvalue, we can then pin the
eigenvalue down using bisection — though, in practice, we would typically
switch to using something like shift-invert when we got close enough.

Note that by using methods based on inertia, we can reliably compute
just the eigenvalues (and corresponding eigenvectors) in a desired interval
without computing the entire spectrum.

Secular equations and divide and conquer

Another solver idea for the symmetric eigenvalue problem is the divide-and-
conquer approach (originally due to Cuppen). The idea is as follows. Suppose
we write a tridiagonal matrix 7" in block 2-by-2 form as

T — Tn 5€m€1T
56165 T '

Now suppose we have the decompositions If the diagonal blocks can be de-
composed as T, — ﬁemeﬁ = QlDlQIT and Thy — BelelT = Q2D2Q2T. Then we
have

T
$ af e (8 812 2o

0 Q2 |Beiel, T 0 @2 0 D,
where
_[@fen
Qer ]’

Now, if D is a diagonal matrix, then

det(D — X + Bvv”) = det(D — NI ) det(I + 3(D — XI) " 'ov?)
= det(D — AI)(1+ Bv" (D — AI)"1w).

The eigenvalues of D + vvT are therefore the zeros of the rational function

n ng
J) =1+ :
;dj—A
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and these zeros interlace the locations of the poles (the entries of the diagonal
entries of D). The equation f(\) = 0 is sometimes called a secular equation.
Because we know that there is exactly one root between each pair of adjacent
entries of the diagonal matrix D (together with one extra), we can find these
roots quite quickly. Thus, we can find all the eigenvalues of a tridiagonal
matrix by solving two eigenvalue problems of half the size and then finding
the roots of a secular equation



