Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 10: Wednesday and Friday, Oct 24 and 26

Orthogonal iteration to QR

On Monday, we went through a somewhat roundabout algbraic path from
orthogonal subspace iteration to the QR iteration. Let me start this lecture
with a much more concise version:

1. The orthogonal iteration Q*TVR® = AQ™ is a generalization of the
power method. In fact, the first column of this iteration is ezactly the
power iteration. In general, the first p columns of Q™ are converging
to an orthonormal basis for a p-dimensional invariant subspace associ-
ated with the p eigenvalues of A with largest modulus (assuming that
there aren’t several eigenvalues with the same modulus to make this
ambiguous).

2. If all the eigenvalues have different modulus, orthogonal iteration ulti-
mately converges to the orthogonal factor in a Schur form

AU =UT

What about the T factor? Note that T'= U* AU, so a natural approx-
imation to 71" at step k& would be

Ak — (Q(k))*AQ(k),
and from the definition of the subspace iteration, we have
Ak — (Q(k))*Q(k‘H)R(k) = QW RK),
where Q) = (Q(k))*g(kﬂ) is unitary.
3. Note that
Ak+L) — (Q(k+1))*A(k)Q(k+1) = (QWYy Ak Q) — R Q)

Thus, we can go from A® to A®+D directly without the orthogonal
factors from subspace iteration, simply by computing
AW — o) gk
A+ — p k).

This is the QR iteration.



Bindel, Fall 2012 Matrix Computations (CS 6210)

Hessenberg matrices and QR steps in O(n?)

A matrix H is said to be upper Hessenberg if it has nonzeros only in the
upper triangle and the first subdiagonal. For example, the nonzero structure
of a 5-by-5 Hessenberg matrix is

X
X

X X X

X X X X
X X X X X
X X X X X

For any square matrix A, we can find a unitarily similar Hessenberg matrix
H = Q*AQ by the following algorithm (see for comparison the Householder
QR code in lecture 18):

function [H,Q] = lec27hess(A)
% Compute the Hessenberg decomposition H = Q’*A*Q using
% Householder transformations.

n = length(A);
Q = eye(n); % Orthogonal transform so far
H=A; % Transformed matrix so far

for j = 1:n-2

% —— Find W = I-2vv’ to put zeros below H(j+1,j)

u = H(j+1l:end, j);
u(1) = u(1) + sign(u(1))*norm(u);
v = u/norm(u);

% — H := WHW’, Q := QW

H(j+1l:end,:) = H(j+l:end,:)-2*vx(v’*H(j+1l:end,:));
H(:,j+1l:end) = H(:,j+1l:end)-(H(:,j+1:end)*(2xv))*v’;
QC:,j+1l:end) QC:,j+l:end)-(Q(:, j+1:end) *(2xv) ) *v’;

end

A Hessenberg matrix H is very nearly upper triangular, and is an inter-
esting object in its own right for many applications. For example, in control



Bindel, Fall 2012 Matrix Computations (CS 6210)

theory, one sometimes would like to evaluate a transfer function
h(s)=c'(sl —A)'b+d

for many different values of s. Done naively, it looks like each each evaluation
would require O(n?) time in order to get a factorization of sI — A; but if
H = Q*AQ is upper Hessenberg, we can write

h(s) = (Qc)"(sI — H)~H(Qb) +d,

and the Hessenberg structure of sI — H allows us to do Gaussian elimination
on it in O(n?) time.

Just as it makes it cheap to do Gaussian elimination, the special structure
of the Hessenberg matrix also makes the Householder QR routine very eco-
nomical. The Householder reflection computed in order to introduce a zero
in the (7 + 1, ) entry needs only to operate on rows j and j + 1. Therefore,
we have

QH=W, W, _o.. WiH =R,

where W; is a Householder reflection that operates only on rows j and j + 1.
Computing R costs O(n?) time, since each W, only affects two rows (O(n)
data). Now, note that

RQ = R<W1W2 . Wn—l);

that is, R(Q is computed by an operation that first mixes the first two
columns, then the second two columns, and so on. The only subdiagonal
entries that can be introduced in this process lie on the first subdiagonal,
and so R(Q) is again a Hessenberg matrix. Therefore, one step of QR iter-
ation on a Hessenberg matrix results in another Hessenberg matrix, and a
Hessenberg QR step can be performed in O(n?) time.

Putting these ideas in concrete form, we have the following code

function H = lec27hessqr (H)
% Basic Hessenberg QR step via Householder transformations.

=]
I

length(H);
zeros(2,n-1);

<
I

% Compute the QR factorization



Bindel, Fall 2012 Matrix Computations (CS 6210)

for j = 1:n-1

% —— Find W_j = I-2vv’ to put zero into H(j+1,j)

u = H(j:j+1,3);

u(1) = u(l) + sign(u(1))*norm(u);
v = u/norm(u) ;

V(:,3) = v;

% —— H := W_j H
H(j:j+1,:) = H(G:j+1,:)-2*xvx(v’*H(j:j+1,:));

end

% Compute RQ
for j = 1:n-1

% -—— H := WHW’, Q := QW
v =V(,3);
H(:,j:j+1) = HC:,j: 3+ -(HC:, j:j+1)*(2%v) ) v’

end

Inverse iteration and the QR method

When we discussed the power method, we found that we could improve
convergence by a spectral transformation that mapped the eigenvalue we
wanted to something with large magnitude (preferably much larger than the
other eigenvalues). This was the shift-invert strategy. We already know there
is a connection leading from the power method to orthogonal iteration to the
QR method, which we can summarize with a small number of formulas.
Let us see if we can follow the same path to uncover a connection from
inverse iteration (the power method with A7, a special case of shift-invert in
which the shift is zero) to QR. If we call the orthogonal factors in orthogonal
iteration Q(k) (Q(O) = I) and the iterates in QR iteration A®) we have

1) AF = QW R

(2) Ak — (Q(k))*A(Q(k)).



Bindel, Fall 2012 Matrix Computations (CS 6210)

In particular, note that because R*) are upper triangular,
Are; = (QWer)ry;

that is, the first column of Q(k) corresponds to the kth step of power itera-
tion starting at e;. What happens when we consider negative powers of A?
Inverting , we find

The matrix R*) = (E("‘“'))‘1 is again upper triangular; and if we look carefully,
we can see in this fact another power iteration:

@;A—’f — eZR(k) (Q(k))* — fg;) (Q(k)en)*-

That is, the last column of Q(k) corresponds to a power iteration converging
to a row eigenvector of A=t

Shifting gears

The connection from inverse iteration to orthogonal iteration (and thus to
QR iteration) gives us a way to incorporate the shift-invert strategy into QR
iteration: simply run QR on the matrix A — oI, and the (n,n) entry of the
iterates (which corresponds to a Rayleigh quotient with an increasingly-good
approximate row eigenvector) should start to converge to A — o, where A is
the eigenvalue nearest o. Put differently, we can run the iteration:

QW RK = A1 _ 5]
A®) — RWQW L 5.

If we choose a good shift, then the lower right corner entry of A®*) should
converge to the eigenvalue closest to ¢ in fairly short order, and the rest of
the elements in the last row should converge to zero.

The shift-invert power iteration converges fastest when we choose a shift
that is close to the eigenvalue that we want. We can do even better if we
choose a shift adaptively, which was the basis for running Rayleigh quotient
iteration. The same idea is the basis for the shifted QR iteration:

(3) QW RK — A1 _ 5
(4) A®) — RWQW L.



Bindel, Fall 2012 Matrix Computations (CS 6210)

This iteration is equivalent to computing

Q(k)ﬂ(k) - H(A —o;I)

What should we use for the shift parameters 0,7 A natural choice is
to use oy, = e A* Ve, which is the same as o}, = (Q™e,)*A(QWe,), the
Rayleigh quotient based on the last column of Q*). This simple shifted QR
iteration is equivalent to running Rayleigh iteration starting from an initial
vector of e,, which we noted before is locally quadratically convergent.

Double trouble

The simple shift strategy we described in the previous section gives local
quadratic convergence, but it is not globally convergent. As a particularly
pesky example, consider what happens if we want to compute a complex
conjugate pair of eigenvalues of a real matrix. With our simple shifting
strategy, the iteration — will never produce a complex iterate, a complex
shift, or a complex eigenvalue. The best we can hope for is that our initial
shift is closer to both eigenvalues in the conjugate pair than it is to anything
else in the spectrum; in this case, we will most likely find that the last two
columns of Q™) are converging to a basis for an invariant row subspace of A,
and the corresponding eigenvalues are the eigenvalues of the trailing 2-by-2
sub-block.

Fortunately, we know how to compute the eigenvalues of a 2-by-2 matrix!
This suggests the following shift strategy: let o} be one of the eigenvalues of
A®)(n—1:n,n—1:n). Because this 2-by-2 problem can have complex roots
even when the matrix is real, this shift strategy allows the possibility that
we could converge to complex eigenvalues. On the other hand, if our original
matrix is real, perhaps we would like to consider the real Schur form, in which
U is a real matrix and 7' is block diagonal with 1-by-1 and 2-by-2 diagonal
blocks that correspond, respectively, to real and complex eigenvalues. If we



Bindel, Fall 2012 Matrix Computations (CS 6210)

shift with both roots of A®(n —1:n,n —1:n), equivalent to computing

QW R®) — (A(kfl) _ amI)(A(’“*l) —op)
k) — (O®))* gk=1) (k)
AT = (W) ATVR™.

There is one catch here: even if we started with A® in Hessenberg form, it
is unclear how to do this double-shift step in O(n?) time!

The following fact will prove our salvation: if we ) and V' are both or-
thogonal matrices and QT AQ and VT AV are both (unreduced) Hessenbergﬂ)
and the first column of ) is the same as the first column of V', then all suc-
cessive columns of () are unit scalar multiples of the corresponding columns
of V. This is the implicit () theorem. Practically, it means that we can do
any sort of shifted QR step we would like in the following way:

1. Apply as a similarity any transformations in the QR decomposition
that affect the leading submatrix (1-by-1 or 2-by-2).

2. Restore the resulting matrix to Hessenberg form without further trans-
formations to the leading submatrix.

In the first step, we effectively compute the first column of @); in the second
step, we effectively compute the remaining columns. Certainly we compute
some transformation with the right leading column; and the implicit Q theo-
rem tells us that any such transformation is basically the one we would have
computed with an ordinary QR step.

! An unreduced Hessenberg matrix has no zeros on the first subdiagonal.



