Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 10: Monday, Oct 22

Orthogonal iteration revisited

Last time, we described a generalization of the power methods to compute
invariant subspaces. That is, starting from some initial subspace V@, we
defined the sequence

V(kJrl) _ AV(k) — Ak+1V(O).

Under some assumptions, the spaces V¥) asymptotically converge to an in-
variant subspace of A. In order to actually implement this iteration, though,
we need a concrete representation of each of the subspaces in terms of a basis.
In the case of the power method, we normalized our vector at each step to
have unit length. The natural generalization in the case of subspace iteration
is to normalize our bases to be orthonormal at each step. If the columns of
V®) form an orthonormal basis for V*)| then the columns of AV®) form
an orthonormal basis for V#+D: and we can compute an orthonormal basis
VD for YEHD by an economy QR decomposition:

VD) D) A1 (k)

This orthogonal iteration gives us a sequence of orthonormal bases V*+1) for
the spaces V.

We also mentioned in the last lecture that orthogonal iteration has the
marvelous property that it runs subspace iteration for a sequence of nested
subspaces. Using MATLAB notation, we have that for any [,

VEDC T DRED Q1 1:0) = AVB(1:00).

So by running orthogonal iteration on an m-dimensional subspace, we mag-
ically also run orthogonal iteration on an [-dimensional subspaces for each
[< m. Recall that the Schur factorization

AU =UT

involves an orthonormal basis U such that for any [, U(:,1 :) spans an
[-dimensional invariant subspace (this is from the triangularity of 7). So
we might hope that if we ran orthogonal iteration on all of A, we would

Bindel, Fall 2012 Matrix Computations (CS 6210)

eventually converge to the U matrix in the Schur factorization. That is,
starting from Q(O) = I, we iterate

(1) QU R+ — Q)

in the hopes that the columns of Q(k), since they span nested bases under-
going subspace iteration, will converge to the unitary factor U.
Now, consider the first two steps of this iteration:

OWRM — A

0P R — 400

If we multiply the second equation on the right by R™Y, we have

(2) QORARM = AQWRM = A2,

Similarly, if we multiply Q(3)R(3) = AQ(S) by R RM | we have
QB RB RAORM = AQB R RM) = 43,

where the last equality comes from . We can keep going in this fashion,
and if we define the upper triangular matrix R® = R®RE-D RO we
have

QR R®) = AF.

That is, Q(k) is precisely the unitary factor in a QR decomposition of A*.
This fact may be unsurprising if we consider that we derived this orthogonal
iteration from the power method.

From orthogonal iteration to the QR iteration

Suppose we have the Schur form AU = UT, or equivalently T = U*AU.
Now, the matrices A% = (Q(k))*A(Q(k)) are each unitarily similar to A,
and if the matrices Q(k) converge to U, then they A®) must converge to T
More generally, if the first span of the first [columns of Q(k) converges to an

invariant subspace basis of A, then A®) should at least converge to a block
upper triangular matrix with zeros below the leading [x [block.

Bindel, Fall 2012 Matrix Computations (CS 6210)

We can think of A®) as being defined by the relation

AQ(k) - Q(k)A(k)_

But we have seen the expression AQ(k) before, in the iteration equation 1}
So we really have

QU Rk — (k) g(k)

Now, suppose we multiply the equation on the left by (Q(k))* and define
QU+ — (Q(k‘))*Q(kH). Then

Q(k+1)R(k+l) — A(k)

So we can compute Q1) and R**+Y by a QR factorization of A%®), and from
there compute Q(k“ = Q(’”l)g(k). What has this to do with anything? Let

us consider what happens when we compute A("““) using these formulas:

k—i—l)) (Q(k—H)
= (QW) (M) AQ™M)(Q™Y)

(Q k-i-l)))(Q(k+1))
— R(k“)Q (k+1)

A(kJrl)

/‘\/‘\

Putting things together, we have the remarkable QR iteration that goes
from A®) to AKk+D):

Q(k+1)R(k+1) _ A(k)
AG+D) _ Rli+D) o0+1)

Under some restrictions on A, the matrices A%® will ultimately converge to
the triangular Schur factor of A. But we have two problems:

1. Each step of the QR iteration requires a QR factorization, which is an
O(n?) operation. This is rather expensive, and even in the happy case
where we might be able to get each eigenvalue with a constant number
of steps, O(n) total steps at a cost of O(n?) each gives us an O(n?)
algorithm. Given that everything else we have done so far costs only
O(n?), an O(n?) cost for eigenvalue computation seems excessive.

Bindel, Fall 2012 Matrix Computations (CS 6210)

2. Like the power iteration upon which it is based, the basic iteration con-
verges linearly, and the rate of convergence is related to the ratios of
the moduli of eigenvalues. Convergence is slow when there are eigen-
values of nearly the same modulus, and nonexistent when there are
eigenvalues with the same modulus.

We now describe how to overcome these two difficulties.

