Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 9: Wednesday, Oct 17

A brief admonishment

One of the great benefits of being a numerical mathematician is that you
can test your ideas on the computer. Even if coming up with problems that
thoroughly test hard cases where some algorithm might fail is hard, a few
randomly chosen tests is often enough to smoke out all sorts of problems,
from programming errors to more fundamental misunderstandings.

So in HW 3, I was disappointed at how many submissions were clearly
never sanity-checked. For the first two problems, some of you produced codes
that failed to run at all, and many of you wrote codes that produced clearly
incorrect results (as determined by comparing, for a randomly constructed
example, the z vector from the equivalent O(n3) computation that I gave
you in the comments). For the third problem, the simple check

A = randn(3,2);

I = eye(3);

Z = zeros(2);

B = [I, A; A, Z];
s = svd(A)

sB = svd(B)

cond (B)

could have been used to sanity check the singular value computations, and
the ultimate condition number calculation. For the fourth problem, a plot
of the difference between cos(x) and the computed polynomial would have
caught most of the computational errors.

More generally, I would encourage you to do numerical experiments to
try to see the patterns when you’re figuring out the types of questions you
see in the homework for this class. Often, working out the details on a small
example problem can quickly give you a hypothesis that you can generalize,
while starting in search of a general hypothesis before doing any examples
takes much longer.

Needless to say, I hope you will take this general advice to heart as you
work on the midterm. At the very least, please make sure you test your
submissions.



Bindel, Fall 2012 Matrix Computations (CS 6210)

Perturbing Gershgorin

Last time, we showed the Gershgorin theorem: the eigenvalues of a matrix
A all lie inside the Gershgorin disks

Gj={z:l]aj; — 2| < Z |ai; |},
i#]
and any connected component of U;G; consisting of exactly m disks will
contain exactly m eigenvalues of A.
Now, let us consider the relation between the Gershgorin disks for a ma-

trix A and a matrix A = A+ F. It is straightforward to write down the
Gershgorin disks G for A:

Gy =By, (a5) = {2 € C: |ag; + ¢j5 — 2| <} where p; =Y |ai; + fil.
i#

Note that |aj; 4+ ¢ej; — 2| > |aj; — 2| — | fj;] and |ai; + fi;]| < |ai;| + 1 fi;], so

(1) G5 CBpis,ipila) = {Z €C:lay—2<pi+ ) |fij\} :

We can simplify this expression even further if we are willing to expand the
regions a bit:

A

(2) Gj S By (ag5)-

The Bauer-Fike theorem

We now apply Gershgorin theory together with a carefully chosen similarity
to prove a bound on the eigenvalues of A+ E where E is a finite perturbation.
This will lead us to the Bauer-Fike theorem.

The basic idea is as follows. Suppose that A is a diagonalizable matrix,
so that there is a complete basis of column eigenvectors V' such that

VAV = A
Then we A + F has the same eigenvalues as

VHA+F)V =A+V'FV =A+F.
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Now, consider the Gershgorin disks for A + E. The crude bound tells us
that all the eigenvalues live in the regions

B () € UBawyien ()
j ;

This bound really is crude, though; it gives us disks of the same radius around
all the eigenvalues \; of A, regardless of the conditioning of those eigenvalues.
Let’s see if we can do better with the sharper bound ( .

To use we need to bound the absolute column sums of F. Let e
represent the Vector of all ones, and let e; be the jth column of the identity
matrix; then the jth absolute column sums of F is O; = eT\F lej, which we
can bound as ¢; < e’ |[V!|F||V]e;. Now, note that we are free to choose
the normalization of the eigenvector V; let us choose the normalization so
that each row of W* = V=1, Recall that we defined the angle 6; by

[wivj]

lwjllallvsll2”

cos(b;) =

where w; and v; are the jth row and column eigenvectors; so if we choose
|wjll2 = 1 and wiv; = 1 (so W* = V'), we must have [[v;]l = sec(f;).
Therefore, |||V ]e;]|a = sec(d;). Now, note that e’ |V 1| is a sum of n rows of
Euclidean length 1, so ||e?|V7!|||s < n. Thus, we have

¢j < nl|Fll2 sec(0;).

Putting this bound on the columns of F together with , we have the
Bauer-Fike theorem.

Theorem 1 Suppose A € C"*" is diagonalizable with eigenvalues Ay, ..., \,.
Then all the eigenvalues of A+ F are in the region

U Buipia seeto,) (M)
J

where 0; is the acute angle between the row and column eigenvectors for
Aj, and any connected component G of this region that contains ezactly m
eigenvalues of A will also contain exactly m eigenvalues of A+ F.



