Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 8: Friday, Oct 12

Why eigenvalues?

I spend a lot of time thinking about eigenvalue problems. In part, this is
because I look for problems that can be solved via eigenvalues. But I might
have fewer things to keep me out of trouble if there weren’t so many places
where eigenvalue analysis is useful! The purpose of this lecture is to tell you
about a few applications of eigenvalue analysis, or perhaps to remind you of
some applications that you’ve seen in the past.

1 Nonlinear equation solving

The eigenvalues of a matrix are the roots of the characteristic polynomial
p(z) = det(z — A).

One way to compute eigenvalues, then, is to form the characteristic polyno-
mial and run a root-finding routine on it. In practice, this is a terrible idea,
if only because the root-finding problem is often far more sensitive than the
original eigenvalue problem. But even if sensitivity were not an issue, finding
all the roots of a polynomial seems like a nontrivial undertaking. Iterations
like Newton’s method, for example, only converge locally. In fact, the roots
command in MATLAB computes the roots of a polynomial by finding the
eigenvalues of a corresponding companion matrixz with the polynomial coef-
ficients on the first row, ones on the first subdiagonal, and zeros elsewhere:

Cd—1 C4—2 ... C1 Cg

1 O ... 0 O

C = 0 1 ... 00
_0 o ... 1 O_

The characteristic polynomial for this matrix is precisely
det(z] —C) =24+ ¢4 127 +.. .+ 12 + .

There are some problems that connect to polynomial root finding, and
thus to eigenvalue problems, in surprising ways. For example, the problem of
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finding “optimal” rules for computing integrals numerically (sometimes called
Gaussian quadrature rules) boils down to finding the roots of orthogonal
polynomials, which can in turn be converted into an eigenvalue problem; see,
for example, “Calculation of Gauss Quadrature Rules” by Golub and Welsch
(Mathematics of Computation, vol 23, 1969).

More generally, eigenvalue problems are one of the few examples I have of
a nonlinear equation where I can find all solutions in polynomial time! Thus,
if I have a hard nonlinear equation to solve, it is very tempting to try to
massage it into an eigenvalue problem, or to approximate it by an eigenvalue
problem.

2 Optimization

Recall that the matrix 2-norm is defined as

[ Az

|All2 = max —— = max || Az||.
20 || z]] [|z]|=1

Taking squares and using the monotonicity of the map z — 2z? for non-
negative arguments, we have

|Al|? = max [|Az||* = max 27 AT Ax.
||z]|2=1 xTz=1

The x that solves this constrained optimization problem must be a stationary
point for the augmented Lagrangian function

L(z,\) = 2" AT Az — AaTz — 1),
le.

VoL(z,\) = 2(AT Ax — \z) =0

VaL(z,\) =272 —1=0.

These equations say that x is an eigenvector of AT A with eigenvalue X. The
largest eigenvalue of AT A is therefore || Al|3.
More generally, if H is any Hermitian matrix, the Rayleigh quotient

v*Huv

V¥V

pu(v)
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has stationary points exactly when v is an eigenvector of H. Optimizing the
Rayleigh quotient is therefore example of a non-convex global optimization
problem that I know how to solve in polynomial time. Such examples are
rare, and so it is tempting to try to massage other nonconvex optimization
problems so that they look like Rayleigh quotient optimization, too.

To give an example of a nonconvex optimization that can be usefully
approximated using Rayleigh quotients, consider the superficially unrelated
problem of graph bisection. Given an undirected graph G with vertices V'
and edges £ C V x V, we want to find a partition of the nodes into two
equal-size sets such that few edges go between the sets. That is, we want to
write V' as a disjoint union V' = V; U V4, |Vi| = |V4|, such that the number of
edges cut |E N (V] x V4)| is minimized. Another way to write the same thing
is to label each node i in the graph with z; € {+1,—1}, and define V; to be
all the nodes with label +1, V5 to be all the nodes with label —1. Then the
condition that the two sets are the same size is equivalent to

Z.’Ei:(),

and the number of edges cut is

B~ =

> (i —xy)
(i,J)EE

We can rewrite the constraint more concisely as e’z = 0, where e is the
vector of all ones; as for the number of edges cut, this is

1
edges cut = ZZL‘TL$

where the graph Laplacian L has the node degrees on the diagonal and —1
in off-diagonal entry (7, j) iff there is an edge from i to j.
Unsurprisingly, the binary quadratic programming problem

minimize 27 Lz s.t. ef2 =0 and x € {+1,—1}"

is NP-hard, and we know of no efficient algorithms that are guaranteed to
work for this problem in general. On the other hand, we can relaz the problem
to

minimize v’ Lv s.t. ev =0 and ||v|* = n,v € R",
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and this problem is an eigenvalue problem: v is the eigenvector associated
with the smallest positive eigenvalue of L, and v’ Lv is n times the cor-
responding eigenvalue. Since the constraint in the first problem is strictly
stronger than the constraint in the second problem, nAy(L) is in fact a lower
bound on the smallest possible cut size, and the sign pattern of v often pro-
vides a partition with a small cut size. This is the heart of spectral partitioning
methods.

3 Dynamics

Eigenvalue problems come naturally out of separation of variables methods,
and out of transform methods for the dynamics of discrete or continuous
linear time invariant systems, including examples from physics and from
probability theory. They allow us to analyze complicated high-dimensional
dynamics in terms of simpler, low-dimensional systems. We consider two ex-
amples: separation of variables for a free vibration problem, and convergence
of a discrete-time Markov chain.

3.1 Generalized eigenvalue problems and free vibra-
tions

One of the standard methods for solving differential equations is separation
of variables. In this approach, we try to write special solutions as a product
of simpler functions, and then write the equations that those functions have
to satisfy. As an example, consider a differential equation that describes the
free vibrations of a mechanical system:

Mi+ Ku=0

Here M € R™ " is a symmetric positive definite mass matriz and K € R™*" is
a symmetric stiffness matriz (also usually positive definite, but not always).
We look for solutions to this system of the form

u(t) = ug cos(wt),
where ug is a fixed vector. To have a solution of this form, we must have

KUO - (,UQMUO = 0,
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i.e. (w? up) is an eigenpair for a generalized eigenvalue problem. In fact, the
eigenvectors for this generalized eigenvalue problem form an M-orthonormal
basis for R, and so we can write every free vibration as a linear combination
of these simple “modal” solutions.

3.2 Markov chain convergence and the spectral gap

This high-level idea of using the eigenvalue decomposition to understand
dynamics is not limited to differential equations, nor to mechanical systems.
For example, a discrete-time Markov chain on n states is a random process
where the state X, is a random variable that depends only on the state
Xi. The transition matriz for the Markov chain is a matrix P where P;; is
the (fixed) probability of transitioning to state ¢ from state j, i.e.

Pij = P{Xp41 = j|Xp = i}.
Let 7®) € R™ be the distribution vector at time k, i.e.
" = p{X, =i}.
Then we have the recurrence relationship
(r DT = ()T p,
In general, this means that
(7T = (7T pk.

Now, suppose the transition matrix P is diagonalizable, i.e. P = VAV L
Then

PE=VAV WAV L . VAV =VA.. AV = VAV

and so

(7T = (zOYTy ARy —L,

An ergodic Markov chain has one eigenvalue at one, and all the other eigenval-
ues are less than one in modulus. In this case, the row eigenvector associated
with the eigenvalue at one can be normalized so that the coefficients are all
positive and sum to 1. This normalized row eigenvector 7*) represents the
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stationary distribution to which the Markov chain eventually converges. To
compute the rate of convergence, one looks at

(@ — 7)) = [[(x© — aO)TVAV < |7 = 7)) s(V) AL

where A = diag(1, Ag, X3, ...), [Ai| > [Aig1], and A = diag(0, Ay, As,...). In
most reasonable operator norms, |A|¥ = |\y|¥, and so a great deal of the
literature on convergence of Markov chains focuses on 1 — [\y|, called the
spectral gap. But note that this bound does not depend on the eigenvalues
alone! The condition number of the eigenvector matrix also plays a role, and
if (V) is very large, then it may take a long time indeed before anyone sees
the asymptotic behavior reflected by the spectral gap.

4 Deductions from eigenvalue distributions

In most of our examples so far, we have considered both the eigenvalues and
the eigenvectors. Now let us turn to a simple example where the distribution
of eigenvalues can be illuminating.

Let A be the adjacency matrix for a graph, i.e.

o 1, if there is an edge from ¢ to j
v 0, otherwise.

Then (AF);; is the number of paths of length & from node i to node j. In
particular, (A*); is the number of cycles of length k that start and end at
node i, and trace(A*) is the total number of length k cycles starting from
any node. Recalling that the trace of a matrix is the sum of the eigenvalues,
and that the eigenvalues of a matrix power are the power of the eigenvalues,
we have that

# paths of length k = Z Ai(A)F,

where \;(A) are the eigenvalues of A; and asymptotically, the number of
cycles of length k for very large k scales like A\;(A)*, where \;(A) is the
largest eigenvalue of the matrix A.

While the statement above deals only with eigenvalues and not with eigen-
vectors, we can actually say more if we include the eigenvector; namely, if
the graph A is irreducible (i.e. there is a path from every state to every
other state), then the largest eigenvalue A\;(A) is a real, simple eigenvalue,
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and asymptotically the number of paths from any node ¢ to node j scales
like the (i, 7) entry of the rank one matrix

Mow?

where v and w are the column and row eigenvectors of A corresponding to
the eigenvalue A, scaled so that w’v = 1.
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