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Week 8: Wednesday, Oct 10

Logistics

Midterm out today (on CMS) — return your solutions by CMS by Monday,
October 22. Good luck!

Eigenvalue problems

An eigenvalue λ ∈ C of a matrix A ∈ Cn×n is a value for which the equations
Av = vλ and w∗A = λw∗ have nontrivial solutions (the eigenvectors w∗ and
v). Together, (λ, v) forms an eigenpair and (λ, v, w∗) forms an eigentriple.
An eigenvector is a basis for a one-dimensional invariant subspace: that is,
A maps anything multiple of v to some other multiple of v. More generally,
a matrix V ∈ Cn×m spans an invariant subspace if AV = V L for some
L ∈ Cn×m.

Associated with any square A, we can write a matrix Q whose columns
form an orthonormal basis for nested invariant subspaces of A; that is, the
first k columns of Q form a k-dimensional invariant subspace of A. This
structure of nested invariant subspaces gives us that

AQ = QT,

where T is an upper triangular matrix. The factorization

A = QTQ∗

is a Schur factorization. Most of the next week or two will be devoted to
methods to compute Schur factorizations (or parts of Schur factorizations).
The Schur factorization is nearly as versatile as, and is far more numerically
stable than, the Jordan canonical form

AV = V J.

where J is a block diagonal matrices with Jordan blocks of the form

Jλ =
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The algebraic multiplicity of an eigenvalue λ is the number of times it
appears on the diagonal of the Jordan form, or the number of times the fac-
tor z − λ divides the characteristic polynomial det(A − zI). The geometric
multiplicity is given by the number of Jordan blocks associated to λ, or by
the dimension of the null space of (A− λI). In general, there is exactly one
eigenvector of A for each Jordan block, and the eigenvectors form a basis
iff A is diagonalizable – that is, if A has only 1-by-1 Jordan blocks and all
geometric and algebraic multiplicities match. The diagonalizable matrices
form a dense set in Cn×n, a fact which is often convenient in proofs (since an
argument for the diagonalizable case together with a continuity argument of-
ten yields a general solution). This fact also explains part of why the Jordan
canonical form is annoying for numerical work: if every matrix is an arbitrar-
ily small perturbation of something diagonalizable, then the Jordan form is
discontinuous as a function of A! Even among the diagonalizable matrices,
though, the eigenvector decomposition is often overrated for computational
purposes. Poor conditioning of the eigenvector basis can make diagonaliza-
tion a numerically unstable business, and most computations that are naively
formulated in terms of an eigenvector basis can equally well be formulated
in terms of Schur basis.

In generalized eigenvalue problems, we ask for nontrivial solutions to

(A− λB)v = 0.

There are also nonlinear eigenvalue problems, which show up in my research
but which we will not talk about in class. In addition to these variants on
the eigenvalue problem, there are also many different factors that affect the
how we choose algorithms. Is the problem...

1. nonsymmetric or symmetric?

2. standard or generalized?

3. to find all eigenvalues or just a few?

4. to compute eigenvectors, invariant subspaces, or just eigenvalues?

For different answers to these questions, there are different “best” choices
of algorithm. For the next week or two, we will focus specifically on the
problem of computing eigenpairs, invariant subspaces, and Schur forms for
nonsymmetric matrices. After that, we will move on to symmetric problems,
which have so much more mathematical structure that they are treated al-
most entirely differently from their nonsymmetric brethren.
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The 2-by-2 case: some illustrative examples

Many of the salient features that occur in general eigenvalue problems can
be illustrated with the 2-by-2 matrix

A =

[
a b
c d

]
.

Finding an eigenvalue is equivalent to finding a root of the characteristic
polynomial:

p(z) = det(A− zI) = (a− z)(d− z)− bc
= z2 − (a+ d)z + (ad− bc).

If the roots of the characteristic polynomial are λ1 and λ2, then we have

p(z) = (z − λ1)(z − λ2)
= z2 − (λ1 + λ2)z + λ1λ2.

We recognize the second coefficient in the characteristic polynomial as minus
the trace a + d = λ1 + λ2. The constant coefficient is the determinant
ad − bc = λ1λ2. Both these coefficients can be seen as functions of the
eigenvalues, but both can be computed efficiently without referring to the
eigenvalues explicitly.

Now suppose we choose some fixed λ ∈ C and look at the 2-by-2 matrices
for which λ is an eigenvalue. If we just want λ to be an eigenvalue, we
must satisfy one scalar equation: p(λ) = 0. To find matrices for which λ is
a double eigenvalue, we must satisfy the additional constraint a + d = 2λ.
And there is only one 2-by-2 matrix for which λ is a double eigenvalue with
geometric multiplicity 2: A = λI. Put differently, the set of 2-by-2 matrices
for which λ is an eigenvalue has codimension 1 (i.e. it is described by one
scalar constraint); the set of 2-by-2 matrices for which λ is an eigenvalue with
algebraic multiplicity 2 has codimension 2; and the set of 2-by-2 matrices for
which λ is an eigenvalue with geometric multiplicity 2 has codimension 4.

More generally, we can say that among general complex n-by-n matri-
ces, the existence of some multiple eigenvalue is a codimension 1 phenomena
(somewhat rare in general); and the existence of an eigenvalue with geomet-
ric multiplicity greater than 1 is a codimension 3 phenomena (very rare in
general). Of course, things change if we consider structured matrices. For
example, in symmetric matrices the algebraic and geometric multiplicities of
all eigenvalues are the same.


