Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 7: Friday, Oct 5

Logistics

1. The take home MT exam will be posted next Wednesday, Oct 9, and
is due on Monday, Oct 22 (in lecture or via CMS). The exam will be
open book.

2. This will be the last lecture on least squares problems. We will turn to
eigenvalue problems on Wednesday.

The need for regularization

Suppose Z € R" is a vector whose components are independent standard
normal random variables. Then W = AZ has a multivariate normal distri-
bution with covariance AAT. Now, consider a least squares problem with

noise:
minimize ||AX — B||3

where B = b+ €Z € R" is the true right hand side b contaminated by
independent normal noise with variance €? in each component. Writing the
pseudoinverse in terms of the economy SVD as A" = VE~'U”, we have
that X is a multivariate normal random variable with mean z = A'b and
covariance 2V 2VT. Even more convenient, consider X = V7X, which
has mean V¥z and covariance €2¥72.

The random variable X is the best linear unbiased estimator for Z; but
what about the variance of this estimator? If some of the singular values of
A are very small relative to €, the variance of the corresponding components
of X may be huge, even though the expected value of X is correct. If we
have reason that z; is modest but o; < €, we may be better off estimating
#; by zero instead of using X;. That is, we trade in the unbiased estimator
(X;) with a biased estimator (0) which has better variance. If we do this for
each component ¢ > r, we are left with the new estimator

X =vx vl
where V,. and U, consist of the first r columns of V and U, and X, =

diag(oy,...,0,). This is sometimes called the truncated SVD solution to
the least squares problem.
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The truncated SVD solution is one example of a regularized solution to
an ill-posed least squares problem, and in the previous lecture we briefly
described another regularization approach based on using a truncated pivoted
QR decomposition for factor selection. Informally, ill-posed problems are
ones in which A is poorly conditioned, so that small errors in the right hand
side lead to giant coefficients in the solution vector. The problem is that the
data simply does not provide enough information to yield a stable, accurate
estimate of the solution vector. So we make a trade, seeking instead an
approximate solution vector that fits the data nearly as well as the full least
squares solution, but without the potentially wild coefficients.

Filtering and Tikhonov regularization

We can write the regularized least squares solution Z obtained by a truncated
SVD as .
F=Vy'U"p

where 6; ' = f(0;)0; ", and the filter function f is a simple cutoff function:

1, o>o0,

Jo) = {0, otherwise.

Unfortunately, computing the SVD is an expensive operation. What if
we could instead use a different filter that still discards — or at least mitigates
— the influence of the small singular values? One such filter function is the

Tikhonov filter:
2

o
0)=———.
The filtered inverse singular values are
~_1 o)
. = —
’ o2+ a?

For values of o that are large relative to o, f(o) is close to one, and &; ' ~
o;'. But for values of o close to zero, f(o) approaches zero like 02, which
is a fast enough decay rate to “damp out” the influence of small singular
values.
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The solution to the Tikhonov-regularized least squares problem can be
written as

z

V(242D euTh
= (VeVT + 2D tvsuTy
= (ATA+ 1) 'ATD

That is, we can apply the filtering operation without using the SVD at all! If
we look more closely, we might note that = also satisfies the normal equation

for the problem
Al . (b
al|* 0

Looking at this formulation, we can see again the basic tradeoff of regular-
ization: find a solution which is consistent with the data (the first term),
but penalize solutions if they are inconsistent with prior assumptions about
things like the size of the coefficients (the second term).

2

minimize = ||AZ — b||* + |7




