Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 7: Wednesday, Oct 2

Sensitivity revisited

Last time we worked through some rather detailed calculations of the sensi-
tivity of least squares problems under perturbations, and found

1= < (k(A)? tan(f) + K(A)) % + k(A) SGC(@)%,

where 6 is the angle between b and the range space of A. The formula looks
complicated because it really involves three distinct effects:

1. If b is nearly orthogonal to the range space of A, then small relative
changes to b result in large relative changes to the projection of b onto
the range space of A. This is why the angle 6 plays a role.

2. If we perturb A, then the projection of b onto the perturbed A moves
by an amount that depends on x(A) and the angle between b and the
range of A.

3. Once we have computed the projection of b onto the range space of A,
we still express that projection as Ax and find the coefficients z. A
second factor of k(A) comes in from this step.

What if we care not about x, but about y = Ax? That is, what if we
really want the nearest thing to b in the range space of A, but we don’t
particularly care about the expression of y in terms of the basis of columns
of A? That is, consider

y = Ax = A(ATA)'ATD.

Note that if A = QR is an “economy” QR decomposition, we have ATA =
RTR and so
y=QR(R"R)'R"Q" = QQ"b,

The matrix P = QQT represents an orthogonal projection:

1. P is a projection:

P?=(QQ")(QQ") =QQ"Q)Q" =QQ" = P.

Bindel, Fall 2012 Matrix Computations (CS 6210)

2. Pb and (I — P)b are always orthogonal:

(PY)Y(I — P)b=b"PT(I — P)b=b"(P(I — P))b=0.

Now, what about the sensitivity of y? This is a messy calculation that
I chose not to do in class, but which I will sketch in these notes. The first
order formula is

0y = 0P b+ P b,
where a messy calculation yields
6P = (I — P)(A)(ATA)TAT + A(ATA) (AT (I — P)
— (I PY6AR'QT + QR T(GAY (I - P),
§Pb= (I —P)(6A)z + QR T(64) .

Now we can use |[(I — P)|| < 1, ||P]]| <1, and ||R7Y| = 0,(A)™!, together
with [[r][/llyll = tan(6) and [|b]|/|ly[| = sec(f), to get

1P| <||A||||x||) 15A]
< + rk(A) tan(0) | ——
vl i A @) S
1P 5| 1]
< sec(0)——-.
Wl =50

Putting everything together, we have

Uowll _ (ANl , oo o I6AL, bl

@ Wl S(TR ”)) Tar e g
1641 o) 101

2) < K(A) (1-+ tan(9) P+ sec(t) o

Here, P db represents the effect of changes in b (part 1 above), and 6P b
represents the effect of changes in the range space of A (part 2).

Note that if we multiply (1)) by o,.(A)~Y|y||/||z||, we have the right hand
side of the sensitivity formula for ||dz||/||z] (part 3).

The punch line of all this is that the squared condition number appears
in our sensitivity formulae only if we care explicitly about z. If x is just an
intermediate for computing Ax, we don’t care so much.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Sparse least squares and Q-less QR

Suppose we want to solve a full-rank least squares problem in which A is
large and sparse. In principle, we could solve the problem via the normal
equations

AT Az = A"b,

or introduce A = QR and multiply AT Az = RT Rz = b by R~T to find
Re = RTATh = Q"b.

Note that there is a very close relation between these approaches; the ma-
trix R in the QR decomposition is a Cholesky factor of AT A in the normal
equations (possibly scaled by a diagonal matrix with £1 on the diagonal).
As we have discussed, it may not be advantageous to use the normal equa-
tions directly, since forming and factoring AT A brings in the square of the
condition number. On the other hand, in a sparse setting it’s not necessarily
such a good idea to use the usual QR approach, since even if A and AT A are
sparse, () in general will not be. Consequently, when A is sparse, we would
typically use the following stepsﬂ

1. Possibly permute the columns of A so that the Cholesky factor of AT A
(or the factor R, which has the same structure) remains sparse. See
help colamd for an example of a generally good permutation.

2. Compute a “Q-less” QR decomposition, e.g. R = qr(A,0) in MAT-
LABwhere A is sparse. This does not compute the (usually very dense)
Q factor explicitly. It also does not form AT A explicitly. If the right
hand side b is known initially, the MATLAB qr function can compute
Q™b implicitly at the same time it does the QR factorization.

3. Compute Qb as R™T(ATb), since the latter computation involves only
a sparse multiply and a sparse triangular solve.

4. Solve Rx = QTb.

It’s not a bad idea to do iterative refinement after this — see help qr in
MATLAB:

'In MATLAB, you can also use backslash to solve a least squares problem, and it will
do the right thing if A is sparse.

Bindel, Fall 2012 Matrix Computations (CS 6210)

x = R\(R’\ (A’ *Db))
r = b-A*x;
e = R\(R’\(A’*r));
X = X + e;

Column pivoting and rank-revealing QR

One reason why you might want to permute the columns of A prior to com-
puting a QR decomposition is to maintain sparsity. Another reason is to
reveal approximate rank deficiency (at less than the cost of an SVD). In
general, if A is nearly rank deficient with rank r, we might want to write

R R mXxr m n—r
A=l @) [B quermiguermee

where ||Rgol|/||A|| is very small (e.g. on the order of machine epsilon). In
practice, though, if A is nearly rank deficient, the first 7 columns of A might
be nearly linearly dependent. To deal with this issue, the QR decomposition
with column pivoting computes

AP = QR

where the column permutation is chosen so that if A is the partly-reduced
matrix at step 4, the vector A(i : m, i) is as large as possible in the 2-norm.
Note that this is exactly analogous to pivoting in Cholesky factorization,
which you heard about from Prof. Van Loan. It is possible to fool this
method, too, and there are more reliable (but slower) rank-revealing QR
algorithms that are more careful — but in practice, pre-multiplying A by a
random () makes the ordinary QR with column pivoting a reasonable rank-
revealing QR with high probability (though still not as reliable as the SVD).

