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Week 7: Monday, Oct 1

Sensitivity of y = ATx

Before describing the sensitivity analysis of least squares, let’s try a simpler
problem: first-order perturbation analysis of rectangular matrix multiplica-
tion.

Let A ∈ Rm×n with m ≥ n and consider

y = AT b.

We wish to compute the relative change in y under small relative perturba-
tions to A and b. We start, as usual, by differentiating the formula in order
to get a first-order perturbation relationship:

δy = δAT b+ AT δb.

Taking norms gives us a relationship between the magnitudes of the pertur-
bations. Using the two-norm, we have

‖δy‖ ≤ ‖δA‖‖b‖+ ‖A‖‖δb‖.

Now let us divide everything by ‖y‖ = ‖AT b‖ and rearrange to relate ‖δy‖/‖y‖
to ‖δA‖/‖A‖ and ‖δb‖/‖b‖:

‖δy‖
‖y‖

≤ ‖A‖‖b‖
‖AT b‖

‖δA‖
‖A‖

+
‖A‖‖b‖
‖AT b‖

‖δb‖
‖b‖

.

How shall we interpret the quantity ‖A‖‖b‖/‖AT b‖? If A were a vector
rather than a matrix, the answer would be clear: this would be the formula
for the secant of the angle between two vectors. Let us explore this connection
further, using the economy SVD A = UΣV T (U rectangular, Σ and V square)
to help with the analysis. Using invariance under orthogonal transforms, we
have

‖A‖‖b‖
‖AT b‖

=
‖Σ‖‖b‖
‖ΣUT b‖

≤ σ1
σn

‖b‖
‖UT b‖

,

where κ(A) = σ1/σn is the condition number for the square matrix A.
How shall we interpret ‖b‖/‖UT b‖? Using orthogonal invariance, note

that we can write ‖UT b‖ = ‖UUT b‖; and UUT b = A(ATA)−1AT b is the
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(I − UUT )b

UUT b

b

Figure 1: Right triangle consisting of b, the closest vector to b in the range
space of A (which is UUT b), and the difference between the two.

closest vector to b in the range space of A. Put differently, we can write b as
a sum of two orthogonal vectors

b = UUT b+ (I − UUT )b,

where UUT b is the projection of b onto the range space of A and (I −UUT )b
is normal to the range space of A (Figure 1). So

‖b‖
‖UT b‖

=
‖b‖

‖UUT b‖
= sec(θ),

where θ is the smallest angle between the range space of A and the vector b.
Putting things together, we have

‖δy‖
‖y‖

≤ κ(A) sec(θ)

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

Sensitivity of least squares

Let’s now return to the sensitivity of the least squares problems. The steps
are roughly the same as those in the analysis of the previous section:

1. Write down an equation for what we want (the normal equation) and
then differentiate to obtain a first-order perturbation relationship.

2. Take norms in order to bound (to first order) the absolute magnitude
of the perturbation to the solution in terms of the absolute magnitudes
of the perturbations to the problem data.
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3. Manipulate the formula to get a bound on the relative perturbation to
the solution in terms of the relative perturbations to the problem data.

4. Interpret the coefficients in the relative perturbation formula trigono-
metrically.

We start with the normal equations

ATAx = AT b.

The first-order perturbation relation is

δATAx+ AT δAx+ ATAx = δAT b+ AT δb,

which we arrange to get

δx = (ATA)−1δAT (b− Ax) + (ATA)−1AT (δb− δAx).

If we define r = b − Ax and let A = UΣV T with singular values σ1, . . . , σn,
we have

‖δx‖ ≤ ‖(ATA)−1‖‖δA‖‖r‖+ ‖(ATA)−1AT‖(‖δb‖+ ‖δA‖‖x‖)

=
‖δA‖
σ2
n

‖r‖+
1

σn
(‖δb‖+ ‖δA‖‖x‖)

Dividing through by ‖x‖ and doing some algebra so that ‖δA‖ and ‖δb‖ only
appear in ratios with ‖A‖ and ‖b‖, we have

‖δx‖
‖x‖

≤ κ(A)2
‖r‖
‖A‖‖x‖

‖δA‖
‖A‖

+ κ(A)

(
‖b‖
‖A‖‖x‖

‖δb‖
‖b‖

+
‖δA‖
‖A‖

)

As in the previous section, we can draw an illuminating right triangle
(Figure 2) whose sides are ‖Ax‖ ≤ ‖A‖‖x‖, ‖r‖, and ‖b‖. In fact, this is the
same triangle that we showed in Figure 1, since Ax = UUT b. In terms of
this triangle, we have

‖r‖
‖A‖‖x‖

≤ ‖r‖
‖Ax‖

= tan(θ),

‖b‖
‖A‖‖x‖

≤ ‖b‖
‖Ax‖

= sec(θ).
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Figure 2: Right triangle consisting of b, the closest vector to b in the range
space of A (which is Ax), and the difference between the two (r).

Putting everything together, we have

‖δx‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖δA‖
‖A‖

+ κ(A) sec(θ)
‖δb‖
‖b‖

.

When the angle θ is not too large (κ(A) tan(θ) small), we essentially have
that small relative changes to A and b are only amplified by κ(A). When
tan(θ) becomes larger, though, perturbations to A get amplified like the
squared condition number. However, the book shows that the quality of the
best fit, as measured by r, only changes like the condition number:

‖δr‖
‖b‖

≤ ‖δb‖
‖b‖

+ 2κ(A)
‖δA‖
‖A‖

.

Which matters more — the change in the coefficients or the change in the
quality of the fit — depends on the application in which the least squares
problem arises.


