Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 6: Wednesday, Sep 28

Householder transformations

The Gram-Schmidt orthogonalization procedure is not generally recommended
for numerical use. Suppose we write A = [a1...a,,] and Q = [q; . . . ¢mm]. The
essential problem is that if r;; < ||a |2, then cancellation can destroy the
accuracy of the computed g;; and in particular, the computed ¢; may not
be particularly orthogonal to the previous ¢;. Actually, loss of orthogonality
can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem,
we need a different approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is
in terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (reflections) that can be used to similar effect. Reflection across the
plane orthogonal to a unit normal vector v can be expressed in matrix form
as

H=1-2uw".

Now suppose we are given a vector x and we want to find a reflection
that transforms z into a direction parallel to some unit vector y. The right
reflection is through a hyperplane that bisects the angle between z and y
(see Figure [1)), which we can construct by taking the hyperplane normal to
x — ||z|ly. That is, letting u = x — ||z||y and v = u/||ul|, we have

(x + lzlly) (@2 + [la]2"y)
)12 + 22Tyl + [l=]*]y]|
=z — (v —|zlly)

= [l=lly.

(I —2v0")z =2—2

If we use y = +ey, we can get a reflection that zeros out all but the first
element of the vector x. So with appropriate choices of reflections, we can
take a matrix A and zero out all of the subdiagonal elements of the first
column.

Now think about applying a sequence of Householder transformations
to introduce subdiagonal zeros into A, just as we used a sequence of Gauss

Bindel, Fall 2012 Matrix Computations (CS 6210)

[y

Figure 1: Construction of a reflector to transform z into ||z||y, ||y|| = 1.
transformations to introduce subdiagonal zeros in Gaussian elimination. This
leads us to the following algorithm to compute the ()R decomposition:

function [Q,R] = lec16hqri(A)
% Compute the QR decomposition of an m-by-n matrix A using
% Householder transformations.

[m,n] = size(A);

Q = eye(m); % Orthogonal transform so far
R = A; % Transformed matrix so far
for j = 1:n

% —-— Find H = I-tau*w*w’ to put zeros below R(j,j)
normx = norm(R(j:end,j));

s = -sign(R(j,3));
ul = R(j,j) - s*normx;
W = R(j:end,j)/ul;
w(l) = 1;

tau = -s*ul/normx;

% -—R :=HR, Q := QH
R(j:end,:) = R(j:end,:)-(tau*xw)*(w’*R(j:end,:));
QC:,j:end) = Q(:,j:end)-(Q(:,j:end)*w)*(tauxw) ’;

Bindel, Fall 2012 Matrix Computations (CS 6210)

end

Note that there are two valid choices of u; at each step; we make the choice
that avoids cancellation in the obvious version of the formula.

As with LU factorization, we can re-use the storage of A by recognizing
that the number of nontrivial parameters in the vector w at each step is the
same as the number of zeros produced by that transformation. This gives us
the following:

function [A,tau]l = lec16hqr2(A)
% Compute the QR decomposition of an m-by-n matrix A using
% Householder transformations, re-using the storage of A
% for the Q and R factors.

[m,n] = size(A);
tau = zeros(n,1);

for j = 1:n

% —— Find H = I-tau*w*w’ to put zeros below A(j,j)

normx = norm(A(j:end, j));

s = -sign(A(j,3));

ul = A(j,j) - s*normx;

W = A(j:end,j)/ul;

w(1) =1;

A(j+1l:end,j) = w(2:end); % Save trailing part of w
AGG,3) = s*normx; % Diagonal element of R
tau(j) = -s*ul/normx;

% -— R := HR

A(j:end,j+l:end) = A(j:end,j+l:end)-...
(tau(j)*w)*(w’*A(j:end, j*+1:end));

end

If we ever need @ or QT explicitly, we can always form it from the com-
pressed representation. We can also multiply by @ and Q7 implicitly:

Bindel, Fall 2012 Matrix Computations (CS 6210)

function QX = lec16applyQ(QR,tau,X)

[m,n] = size(QR);
QX = X;
for j =n:-1:1
w = [1; QR(j+1l:end,j)];
QX(j:end,:) = QX(j:end,:)-(tau(j)*w)*(w’*QX(j:end, :));
end

function QTX = lec16applyQT(QR,tau,X)

[m,n] = size(QR);
QTX = X;
for j = 1:n

w = [1; QR(j+1:end,j)];
QTX(j:end,:) = QTX(j:end,:)-(tau(j)*w)*(w’ *QTX(j:end,:));
end

Givens rotations

Householder reflections are one of the standard orthogonal transformations
used in numerical linear algebra. The other standard orthogonal transforma-
tion is a Givens rotation:

so if we choose

§= —— c=

then the Givens rotation introduces a zero in the second column. More
generally, we can transform a vector in R™ into a vector parallel to e; by
a sequence of m — 1 Givens rotations, where the first rotation moves the

Bindel, Fall 2012 Matrix Computations (CS 6210)

last element to zero, the second rotation moves the second-to-last element to
zero, and so forth.

For some applications, introducing zeros one by one is very attractive.
In some places, you may see this phrased as a contrast between algorithms
based on Householder reflections and those based on Givens rotations, but
this is not quite right. Small Householder reflections can be used to introduce
one zero at a time, too. Still, in the general usage, Givens rotations seem to
be the more popular choice for this sort of local introduction of zeros.

