
Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 6: Wednesday, Sep 26

Logistics

1. HW 2 is graded.

2. HW 3 is posted. Because October 8 is Fall Break, it is due on Wednes-
day, October 10.

3. I have an A-exam at 9 am next Friday, October 5. Consequently, I will
have to skip office hours on that day.

Linear least squares

Suppose A ∈ Rm×n where m > n. Then in general we will not be able to
solve systems of the form Ax = b, and the best we can do is to minimize the
residual error. Minimizing in the 2-norm gives us the standard least squares
problem:

argminx ‖Ax− b‖22.

Thing of the squared residual as a quadratic function in x:

F (x) = ‖Ax− b‖2 = (Ax− b)T (Ax− b) = xTATAx− 2xTAT b+ bT b.

Then the minimum occurs when

∇F (x) = 2(ATAx− AT b) = 0.

Thus we have
ATAx = AT b.

These are the normal equations, so named because they are exactly the equa-
tions that make the residual Ax− b orthogonal (normal) to anything vector
Ay in the range space of A.

If A is full rank, then ATA is symmetric and positive definite matrix,
and the normal equations have a unique solution that we can compute via
Cholesky factorization. But κ(ATA) = κ(A), so if κ(A) is even moderately
large, the condition number for the normal equations may be terrible. We
will therefore t
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If A is rank-deficient, we have a rank-deficient least squares problem.
Though (nearly) rank-deficient least squares problems are fairly common in
practice, for the moment we will concentrate on the case when A has full
rank.

Orthogonal transformations and Gram-Schmidt

Recall that orthogonal transformations have the property (and indeed can
be defined by the property) that they leave the Euclidean norm alone. If Q
is any matrix with orthonormal columns, we can write

‖Ax− b‖22 = ‖QT (Ax− b)‖22 = ‖QTAx−QT b‖22.

This suggests an alternative approach to the least squares problem: find
Q such that QTA has a relatively simple form. A natural choice is the
decomposition

A = QR,

where Q is an m×m orthogonal matrix and R is an m× n upper triangular
matrix. Eqvuivalently, we can write the “economy” version of the decompo-
sition, A = QR with an m × n matrix Q and an n × n upper triangular R,
where the columns of Q form an orthonormal basis for the range space of
A. Using this decomposition, we can solve the least squares problem via the
triangular system

Rx = QT b.

The Gram-Schmidt procedure is usually the first method people learn
for converting some existing basis (columns of A) into an orthonormal basis
(columns of Q). For each column of A, the procedure subtracts off any
components in the direction of the previous columns, and then scales the
remainder to be unit length. In Matlab, Gram-Schmidt looks something
like this:

Q = [];

for j = 1:n

v = A(:,j); % Take the jth original basis vector

v = v-Q*(Q’*v); % Make it orthogonal to q_i, i = 1:j-1

v = v/norm(v); % Normalize what remains

Q = [Q, v]; % Append the result to the basis

end
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Where does R appear in this algorithm? It appears thus:

Q = [];

R = zeros(m);

for j = 1:n

v = A(:,j); % Take the jth original basis vector

rp = Q’*v; % Project v onto previous basis vectors

v = v-Q*u; % Make vector orthogonal to q_i, i = 1:j-1

rjj = norm(v); % Get the normalizing factor

v = v/rjj; % Normalize what remains

Q = [Q, v]; % Append the result to the basis

R(1:j,j) = [rp; rjj]; % ... and update R

end

That is, R accumulates the multipliers that we computed from the Gram-
Schmidt procedure. This idea that the multipliers in an algorithm can be
thought of as entries in a matrix should be familiar, since we encountered it
before when we looked at Gaussian elimination.


