Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 5: Monday, Sep 17

The slippery inverse

The concept of the inverse of a matrix is generally more useful in theory
than in numerical practice. We work with the inverse implicitly all the time
through solving linear systems via LU; but we rarely form it explicitly, unless
the inverse has some special structure we want to study or to use.

If we did want to form A~! explicitly, the usual approach is to com-
pute PA = LU, then use that factorization to solve the systems Az, = ey,
where e, is the kth column of the identity matrix and xj is thus the kth
column of the identity matrix. As discussed last time, forming the LU fac-
torization takes n?/3 multiply-adds (2n®/3 flops), and a pair of triangular
solves takes n? multiply-add operations. Therefore, computing the inverse
explicitly via an LU factorization takes about n3 multiply-add operations,
or roughly three times as much arithmetic as the original LU factorization.
Furthermore, multiplying by an explicit inverse is almost exactly the same
amount of arithmetic work as a pair of triangular solves. So computing and
using an explicit inverse is, on balance, more expensive than simply solving
linear systems using the LU factorization.

To make matters worse, multiplying by the explicit inverse of a matrix is
not a backward stable algorithm. Even if we could compute A™! essentially
exactly, only committing rounding errors when storing the entries and when
performing matrix-vector multiplication, we would find fi(A7'b) = (A~ +
F)b, where |F| < népan|A™"|. But this corresponds to to a backward error
of roughly —AF A, which is potentially much larger than ||A||.

In summary: you should get used to the idea that any time you see an
inverse in the description of a numerical method, it is probably shorthand for
“solve a linear system here.” Except in special circumstances, forming and
multiplying by an explicit inverse is both slower and less numerically stable
than solving a linear system by Gaussian elimination.

Iterative refinement revisited
At the end of last lecture, we discussed iterative refinement:

T4l = T + A_la) - Al'k)

Bindel, Fall 2012 Matrix Computations (CS 6210)

The fixed point for this iteration is + = A~'b, and we can write a simple
recurrence for the error e, 1 = xp — x:

€11 — AilEek

where E = A — A. Therefore, if ||A™'E|| < 1, then iterative refinement
converges — in exact arithmetic.
In floating point arithmetic, we actually compute something like

Tge1 = Tp + Afl(b — Axy + 0k) + pg,

where 0 is an error associated with computing the residual, and p; is an
error associated with the update. This gives us the error recurrence

err1 = A Eey + A0, +
If ||0k]| < v and ||pg|| < B for all k, then we can show that

- allA7H + 8
— < ||A~ E|* - _—
If we evaluate the residual in the obvious way, we typically have

a < ClemachHA” ||:L‘||,

ﬁ S CZGmacthHa

for some modest ¢; and ¢o; and for large enough k, we end up with
S Olemach’{(A> + C’2€mach-

That is, iterative refinement leads to a relative error not too much greater
than we would expect due to a small relative perturbation to A; and we can
show that in this case the result is backward stable. And if we use mized
precision to evaluate the residual accurately enough relative to x(A) (i.e.
ak(A) < B) we can actually achieve a small forward error.

Condition estimation

Suppose now that we want to compute xi(A) (or koo(A) = k1(AT)). The
most obvious approach would be to compute A~!, and then to evaluate

Bindel, Fall 2012 Matrix Computations (CS 6210)

|A7Y|; and ||All;. But the computation of A™! involves solving n linear
systems for a total cost of O(n®) — the same order of magnitude as the
initial factorization. Error estimates that cost too much typically don’t get
used, so we want a different approach to estimating x;(A), one that does not
cost so much. The only piece that is expensive is the evaluation of [|[A™Y,
so we will focus on this.

Note that ||A7'z||; is a convex function of x, and that ||z|; < 1 is a
convex set. So finding

IA™H I = max A7 2]y
<1

is a convex optimization problem. Also, note that || - ||; is differentiable
almost everywhere: if all the components of y are nonzero, then

'y = |lylli, for & = sign(y);

and if dy is small enough so that all the components of y + dy have the same
sign as the corresponding components of y, then

& (y + 0y) = |ly + oyx

More generally, we have

¢u < el llull = fulls,

i.e. even when dy is big enough so that the linear approximation to ||y + dy||1
no longer holds, we at least have a lower bound.
Since y = A~'z, we actually have that

€7 AT (@ + 02)| < AT (@ + o),

with equality when dz is sufficiently small (assuming y has no zero compo-
nents). This suggests that we move from an initial guess x to a new guess
Tnew DY Maximizing

|€TA_la7neW|

over ||ZTyew|| < 1. This actually yields zpew = e;, where j is chosen so that
the jth component of 27 = (X A~! has the greatest magnitude.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Putting everything together, we have the following algorithm

% Hager’s algorithm to estimate norm(A~{-1},1)
% We assume solveA and solveAT are 0(n"2) solution algorithms
% for linear systems involving A or A’ (e.g. via LU)

x = ones(n,1)/n; % Initial guess
while true

y = solveA(x); % Evaluate y = A~{-1} x
xi = sign(y); % and z = A"{-T} sign(y), the
z = solveAT(xi); % (sub)gradient of x -> \[|A"{-1} x\|_1.

% Find the largest magnitude component of z
[znorm, j] = max(abs(z));

% znorm = |z_j| is our lower bound on [A~{-1} e_jl.
% If this lower bound is no better than where we are now, quit
if znorm <= norm(y,1)
invA_normest = norm(y,1);
break;
end

% Update x to e_j and repeat
x = zeros(n,1); x(j) = 1;

end

This method is not infallible, but it usually gives estimates that are the
right order of magnitude. There are various alternatives, refinements, and
extensions to Hager’s method, but they generally have the same flavor of
probing A~! through repeated solves with A and AT

Scaling

Suppose we wish to solve Ax = b where A is ill-conditioned. Sometimes, the
ill-conditioning is artificial because we made a poor choice of units, and it

Bindel, Fall 2012 Matrix Computations (CS 6210)

appears to be better conditioned if we write
DlADgy = le,

where D; and D, are diagonal scaling matrices. If the original problem was
poorly scaled, we will likely find x(D;AD;) < k(A), which may be great for
Gaussian elimination. But by scaling the matrix, we are really changing the
norms that we use to measure errors — and that may not be the right thing
to do.

For physical problems, a good rule of thumb is to non-dimensionalize
before computing. The non-dimensionalization will usually reveal a good
scaling that (one hopes) simultaneously is appropriate for measuring errors
and does not lead to artificially inflated condition numbers.

