Week 4: Monday, Sep 10

Introduction

For the next few lectures, we will be exploring the solution of linear systems. Our main tool will be the factorization $P A=L U$, where P is a permutation, L is a unit lower triangular matrix, and U is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a first linear algebra class implicitly computes this decomposition; but by thinking about the decomposition explicitly, we can come up with other organizations for the computation.

Triangular solves

Suppose that we have computed a factorization $P A=L U$. How can we use this to solve a linear system of the form $A x=b$? Permuting the rows of A and b, we have

$$
P A x=L U x=P b,
$$

and therefore

$$
x=U^{-1} L^{-1} P b
$$

So we can reduce the problem of finding x to two simpler problems:

1. Solve $L y=P b$
2. Solve $U x=y$

We assume the matrix L is unit lower triangular (diagonal of all ones + lower triangular), and U is upper triangular, so we can solve linear systems with L and U involving forward and backward substitution.

As a concrete example, suppose

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right], \quad d=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

To solve a linear system of the form $L y=d$, we process each row in turn to find the value of the corresponding entry of y :

1. Row 1: $y_{1}=d_{1}$
2. Row 2: $2 y_{1}+y_{2}=d_{2}$, or $y_{2}=d_{2}-2 y_{1}$
3. Row 3: $3 y_{1}+2 y_{2}+y_{3}=d_{3}$, or $y_{3}=d_{3}-3 y_{1}-2 y_{2}$

More generally, the forward substitution algorithm for solving unit lower triangular linear systems $L y=d$ looks like
$\mathrm{y}=\mathrm{d}$;
for $\mathrm{i}=2: \mathrm{n}$
$y(i)=d(i)-L(1: i-1) * y(1: i-1)$
end
Similarly, there is a backward substitution algorithm for solving upper triangular linear systems $U x=d$

```
x(n) = d(n)/U(n,n);
for i=n-1:-1:1
    x(i) =( d(i)-U(i+1:n)*x(i+1:n) )/U(i,i)
end
```

Each of these algorithms takes $O\left(n^{2}\right)$ time.

Gaussian elimination by example

Let's start our discussion of $L U$ factorization by working through these ideas with a concrete example:

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]
$$

To eliminate the subdiagonal entries a_{21} and a_{31}, we subtract twice the first row from the second row, and thrice the second row from the third row:

$$
A^{(1)}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]-\left[\begin{array}{ccc}
0 \cdot 1 & 0 \cdot 4 & 0 \cdot 7 \\
2 \cdot 1 & 2 \cdot 4 & 2 \cdot 7 \\
3 \cdot 1 & 3 \cdot 4 & 3 \cdot 7
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right] .
$$

That is, the step comes from a rank-1 update to the matrix:

$$
A^{(1)}=A-\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 7
\end{array}\right] .
$$

Another way to think of this step is as a linear transformation $A^{(1)}=M_{1} A$, where the rows of M_{1} describe the multiples of rows of the original matrix that go into rows of the updated matrix:

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=I-\tau_{1} e_{1}^{T}
$$

Similarly, in the second step of the algorithm, we subtract twice the second row from the third row:

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right]=\left(I-\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\right) A^{(1)}
$$

More compactly: $U=\left(I-\tau_{2} e_{2}^{T}\right) A^{(1)}$.
Putting everything together, we have computed

$$
U=\left(I-\tau_{2} e_{2}^{T}\right)\left(I-\tau_{1} e_{1}^{T}\right) A
$$

Therefore,

$$
A=\left(I-\tau_{1} e_{1}^{T}\right)^{-1}\left(I-\tau_{2} e_{2}^{T}\right)^{-1} U=L U
$$

Now, note that

$$
\left(I-\tau_{1} e_{1}^{T}\right)\left(I+\tau_{1} e_{1}^{T}\right)=I-\tau_{1} e_{1}^{T}+\tau_{1} e_{1}^{T}-\tau_{1} e_{1}^{T} \tau_{1} e_{1}^{T}=I
$$

since $e_{1}^{T} \tau_{1}$ (the first entry of τ_{1}) is zero. Therefore,

$$
\left(I-\tau_{1} e_{1}^{T}\right)^{-1}=\left(I+\tau_{1} e_{1}^{T}\right)
$$

Similarly,

$$
\left(I-\tau_{2} e_{2}^{T}\right)^{-1}=\left(I+\tau_{2} e_{2}^{T}\right)
$$

Thus,

$$
L=\left(I+\tau_{1} e_{1}^{T}\right)\left(I+\tau_{2} e_{2}^{T}\right)
$$

Now, note that because τ_{2} is only nonzero in the third element, $e_{1}^{T} \tau_{2}=0$; thus,

$$
\begin{aligned}
L & =\left(I+\tau_{1} e_{1}^{T}\right)\left(I+\tau_{2} e_{2}^{T}\right) \\
& =\left(I+\tau_{1} e_{1}^{T}+\tau_{2} e_{2}^{T}+\tau_{1}\left(e_{1}^{T} \tau_{2}\right) e_{2}^{T}\right. \\
& =I+\tau_{1} e_{1}^{T}+\tau_{2} e_{2}^{T} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
3 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

The final factorization is

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]=L U
$$

Note that the subdiagonal elements of L are easy to read off: for $j>i$, $l_{i j}$ is the multiple of row j that we subtract from row i during elimination. This means that it is easy to read off the subdiagonal entries of L during the elimination process.

Basic LU factorization

Let's generalize our previous algorithm and write a simple code for $L U$ factorization. We will leave the issue of pivoting to a later discussion. We'll start with a purely loop-based implementation:

```
%
% Overwrites A with an upper triangular factor U, keeping track of
% multipliers in the matrix L.
%
function [L,A] = mylu(A)
    n = length(A);
    L = eye(n);
    for j=1:n-1
        for i=j+1:n
            % Figure out multiple of row j to subtract from row i
            L(i,j) = A(i,j)/A(j,j);
            % Subtract off the appropriate multiple
            A(i,j) = 0
            for k=j+1:n
            A(i,k) = A(i,k) - L(i,j)*A(j,k);
        end
        end
    end
```

Note that we can write the two innermost loops more concisely by thinking of them in terms of applying a Gauss transformation $M_{j}=I-\tau_{j} e_{j}^{T}$, where τ_{j} is the vector of multipliers that appear when eliminating in column j :

```
%
% Overwrites A with an upper triangular factor U, keeping track of
% multipliers in the matrix L.
%
function [L,A] = mylu(A)
```

 \(\mathrm{n}=\) length \((\mathrm{A}) ;\)
 \(\mathrm{L}=\mathbf{e y e}(\mathrm{n})\);
 for \(\mathrm{j}=1\) : \(\mathrm{n}-1\)
 \% Form vector of multipliers
 \(\mathrm{L}(\mathrm{j}+1: \mathrm{n}, \mathrm{j})=\mathrm{A}(\mathrm{j}+1: \mathrm{n}, \mathrm{j}) / \mathrm{A}(\mathrm{j}, \mathrm{j}) ;\)
 \% Apply Gauss transformation
 \(\mathrm{A}(\mathrm{j}+1: \mathrm{n}, \mathrm{j})=0\);
 \(A(j+1: n, j+1: n)=A(j+1: n, j+1: n)-L(j+1: n, j) * A(j, j+1: n) ;\)
 end

Problems to ponder

1. If U is upper triangular, give an explicit formula for the entries of U^{-1}.
2. What is the complexity of the Gaussian elimination algorithm?
3. Describe how to find A^{-1} using Gaussian elimination. Compare the cost of solving a linear system by computing and multiplying by A^{-1} to the cost of doing Gaussian elimination and two triangular solves.
4. Consider a parallelipiped in \mathbb{R}^{3} whose sides are given by the coulmns of a 3-by-3 matrix A. Interpret $L U$ factorization geometrically, thinking of Gauss transformations as shearing operations. Using the fact that shear transformations preserve volume, give a simple expression for tne volume of the parallelipiped.
