
Bindel, Fall 2009 Matrix Computations (CS 6210)

Week 3: Friday, Sep 7

Logistics

1. HW 1 may be submitted on CMS (by midnight) or as hard copy (by
lecture). The programming is pretty trivial for this one, so MATLAB
fragments in your write-up are fine – no need to submit separate m-files.

2. If you’re still thinking about how to generate random matrices for Prob-
lem 1, try ‘help rand‘ and ‘help sprand‘. Note that just as ‘sparse‘ con-
verts a full matrix into sparse format, ‘full‘ converts a sparse matrix
into dense format.

3. Last lecture is not the last time we will be visiting the SVD – I know I
went a little fast, but don’t worry if you didn’t get it all the first time.

Better multiplying through structure

Consider the matrices whose elements are as follows.

1. A
(1)
ij = xiyj for vectors x, y ∈ Rn.

2. A
(2)
ij = xi + yj.

3. A
(3)
ij = 1 if i+ j even, 0 otherwise.

4. A
(4)
ij = 1 if j = π(i) for some permutation i.

5. A
(5)
ij = δij + xiyj.

6. A
(6)
ij = µ|i−j|.

The questions:

1. How can we write a fast (O(n)) algorithm to compute v = Au for each
of these matrices?

2. Given general nonsingular B and C, can we write a fast algorithm to
multiply by Â = BAC in O(n) time (assuming some precomputation
is allowed)?

Bindel, Fall 2009 Matrix Computations (CS 6210)

3. Given a general nonsingular B, can we write a fast multiplication al-
gorithm for Ã = B−1AB?

The first three matrices are all low-rank. The first matrix can be written
as an outer product A(1) = xyT ; the second matrix is A(2) = xeT−eyT , where
e is the vector of all ones; and the third matrix is A(3) = eodde

T
odd + eevene

T
even,

where eodd is the vector with ones in all odd-index entries and zeros elsewhere,
and eeven is the vector with ones in all even-index entries. We can write
efficient Matlab functions to multiply by each of these matrices:

% Compute v = A1*u = (x*y’)*u

function v = multA1(u,x,y)

v = x*(y’*u);

% Compute v = A2*u

function v = multA2(u,x,y)

v = x*sum(u)+y’*u;

% Compute v = A3*u

function v = multA3(u);

v = zeros(length(u),1);

v(1:2:end) = sum(u(1:2:end));

v(2:2:end) = sum(u(2:2:end));

Note that all we are really using in these routines is the fact that the un-
derlying matrices are low rank. The rank is a property of the underlying
linear transformation, independent of basis; that is, rank(A) = rank(BAC)
for any nonsingular B and C. So we can still get a fast matrix multiply for
Â(1) = BA(1)C, for example, by precomputing x̂ = Bx and ŷ = CTy and
then writing Â(1) = x̂ŷT .

The fourth matrix just shuffles the entries of the input vector, which is
trivial in Matlab.

% Compute v = A4*u, A4(i,j) = 1 if j = p(i), 0 otherwise

% This means v(i) = u(p(i));

function v = multA4(v,p)

v = u(p);

Bindel, Fall 2009 Matrix Computations (CS 6210)

Applying this matrix requires no arithmetic, but it does require O(n) index
lookups and element copies. This is a prototypical example of a sparse matrix
– one in which most of the matrix elements are zero – but the sparse structure
is completely destroyed when we change the basis.

The fifth matrix is an identity plus a low-rank matrix: A(5) = I + xyT .
This structure is destroyed if we change bases independently for the domain
and range space (i.e., BA(5)C has no useful structure), but it is preserved
when we make the same change of basis for both the domain and range (i.e.,
B−1A(5)B = I + x̂ŷT , where x̂ = B−1x and ŷ = BTy.

The sixth matrix is much more interesting. Though the matrix does not
have lots of zeros and is not related in an obvious way to something with
low rank, there is nonetheless enough structure for us to do a fast multiply.
Writing each entry of v = A(4)u in component form, we have

vj =
n∑

i=1

µ|i−j|ui =

(
j−1∑
i=1

µj−iui

)
+

(
n∑

i=j

µi−jui

)
= rj + lj.

where rj and lj refer to the parts of the dot product to the right and left of
the main diagonal, respectively. Now notice that

r1 = 0

ln = un

rj+1 = µ(rj + uj)

lj = µlj+1 + uj.

The following Matlab code runs to compute the matrix-vector product with
A(6) in O(n) time:

% Compute v=A6*u

function v = multA6(u,mu);

n = length(u);

% Run the recurrence for r forward

r = zeros(n,1);

for j = 1:n-1

r = (r+u(j)) * mu;

end

Bindel, Fall 2009 Matrix Computations (CS 6210)

% Run the recurrence for l backward

l = zeros(n,1);

l(n) = u(n);

for j = n-1:-1:1

l(j) = l(j+1)*mu + u(j);

end

v = l+r;

There is no fast multiply for B−1A(6)B, let alone for BA(6)C.

Nonzero structure

One important type of structure in matrices involves where there can be
nonzeros. For example, a lower triangular L matrix satisfies lij = 0 for j > i.
If we put crosses where the can be nonzeros, we have

L =

×
× ×
× × ×
...

...
...

. . .

× × × . . . ×

 .

Similarly, an upper triangular matrix U satisfies uij = 0 for j < i. A banded
matrix has zeros outside some distance of the diagonal; that is, B is banded
with lower bandwidth p and upper bandwidth q if bij = 0 for j < i − p
and j > i + q. For example, a matrix with lower bandwidth 1 and upper
bandwidth 2 has this nonzero structure:

B =

× × ×
× × × ×
× × × ×
× × × ×

.

× × × ×
× × ×
× ×

.

Bindel, Fall 2009 Matrix Computations (CS 6210)

A banded matrix with b+ q � n is a special case of a sparse matrix in which
most of the elements are zero.

Why do we care about these matrix structures? One reason is that we can
use these structures to improve the performance of matrix multiplication. If
nnz is the number of nonzeros in a matrix, then matrix-vector multiplication
can be written to take O(nnz) time. We can also represent the matrix using
O(nnz) storage. Another reason is that some structures are easy to compute
with. For example, if we want to solve a linear system with a triangular
matrix, we can do so easily using back-substitution; and if we want the
eigenvalues of a triangular matrix, we can just read the diagonal.

Compact storage

How do we represent triangular matrices, banded matrices, and general sparse
matrices on the computer? Recall that the conventional storage schemes for
dense matrix store one column after the other (column-major storage, used
by Matlab and Fortran) or one row after the other (row-major order, used
by C). For example, the matrix

A =

[
1 3
2 4

]
is stored in four consecutive memory locations as[

1 2 3 4
]
,

assuming we are using column-major format. To store triangular, banded,
and sparse matrices in compact form, we will again lay out the column entries
one after the other — but we will leave out zero elements. For example,
consider a banded matrix with lower bandwidth 1 and upper bandwidth 2:

B =

1 3 6
2 4 7 10

5 8 11 14
9 12 15 18

13 16 19 22
17 20 23

21 24

.

Bindel, Fall 2009 Matrix Computations (CS 6210)

Each column of this matrix contains at most p+1+1 = 4 nonzeros, with the
first few and last few columns as exceptions. We get rid of these exceptions
by conceptually padding the matrix with zero rows:

0
0 0
1 3 6
2 4 7 10

5 8 11 14
9 12 15 18

13 16 19 22
17 20 23

21 24
0

.

With the extra padding, we have exactly four things to store for each column.
Think of putting these elements into a data structure B.band:

B.band =

0 0 6 10 14 18 22
0 3 7 11 15 19 23
1 4 8 12 16 20 24
2 5 9 13 17 21 0

 .
The B.band structure would typically then be laid out in memory in column-
major order.

The details of multiplying by a band matrix were not covered in lecture,
but they are in the book.

What if we have relatively few nonzeros in a matrix, but they are not in
a narrow band about the origin or some other similarly regular structure? In
this case, we would usually represent the matrix by a general sparse format.
The format Matlab uses internally is compressed sparse columns. In com-
pressed sparse column format, we keep a list of the nonzero entries and their
corresponding rows, stored one column after the other; and a list of pointers
saying where the data for each column starts. For example, consider the
matrix

A =

a11 0 0 a14
0 a22 0 0
a31 0 a33 0
0 a42 0 a44

 .

Bindel, Fall 2009 Matrix Computations (CS 6210)

In compressed sparse column form, we would have

1 2 3 4 5 6 7
entries = a11 a31 a22 a42 a33 a14 a44
rows = 1 3 2 4 3 1 4

column pointers = 1 3 6 8

The last entry in the column pointer array tells is there to indicate where the
end of the last column is. Fortunately, if you are using Matlab, the details
of this data structure are hidden from you. To get a sparse representation of
a matrix A is as simple as writing

As = sparse(A);

