Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 3: Wednesday, Sep 5

Cauchy-Schwarz: a quick reminder
For any inner product,
0 < [lsu+f* = (su+ v, su+v) = 8[|ul]® + 2s(u, v) + [|v]|*

So we have a quadratic in s with at most one real root. Therefore, the
discriminant must be nonpositive, i.e.

Au, v)* — Aflul|lv]]* < 0.
With a little algebra, we have the Cauchy-Schwarz inequality,
[(u, 0)| < ull[v]].

Furthermore, |(u, v)| = ||ul|||v|| iff ||su — v||* = 0 for some s, in which case u
and v are parallel.

I hope you will have seen the Cauchy-Schwarz inequality before, but I
remind you of it because I will want to use it repeatedly. In particular, I
want to use it right now to prove that ||Al|s = ||A*||2. By definition,

[A[l2 = max [[Av][,.

[[ol=1

Let v1 be a unit vector such that || Avy || is maximal and define u; = Avy /|| Avq||2.
Then by Cauchy-Schwarz, together with the definition of the 2-norm, we have

[All2 = (Avy,ur) = (o1, Au) < lofl[[A%uall2 = [[A%ua ]2 < [JAT]]2.
Now define wy = A*uy/||A*uq||2, and use the same argument to get that
[A%]l2 = (A%ur, w1) = (ur, Awr) < Jlug[|[|Awr[[2 = [[Aws [l < [ All2.

Therefore, ||Alls = ||As||2, and all the inequalities in the previous two linear
are actually equalities. Note that this also means that both v; and w; are
parallel to A*u;, and hence to each other. In fact, both v; and w; are vectors
that form a zero angle with A*u; — which means that v; = wy.
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Orthogonal matrices

To develop fast, stable methods for matrix computation, it will be crucial
that we understand different types of structures that matrices can have. This
includes both “basis-free” properties, such as orthogonality, singularity, or
self-adjointness; and properties such as the location of zero elements that are
really associated with a matrixz rather than with a linear transform.

Orthogonal matrices will be important throughout our work. The usual
definition says that square matrix () is orthogonal if Q*Q) = I, but there are
other ways to characterize orthogonality as well. For example, a real square
matrix () is orthogonal iff ||Qu|l2 = ||[v||2 for all v. Why? Recall that for a
real vector space,

(u+v,u+v) = (u,u) + (v,v) + 2(u, v).

With a little algebra, we have

1
(uv) = 5 (lu+vllz = [lullz = [lvl2)

Therefore, if ||Qu|2 = ||v||2 for every v, we have

1
(Qu, Q) = 5 (R +v)ll5 = Qulls — 1Qull3)
1
= 5 (e +l5 = lfullz = l[0]13) = (u,v).

In particular, that means that if e; denotes the ith column of the identity,
then (Qe;, Qe;) = (e;, ;) = 0;5, or Q*Q = 1.

Because a matrix is orthogonal iff it preserves lengths in the two-norm,
we have that

QA2 = ||All2, |AQ]2 = ||All2,
|QA|lF = ||AllF, lAQ|F = || Allr-

There are other important cases of things that remain invariant under orthog-
onal transformation, too. For example, suppose Z1, ..., Z, are independent
standard normal random variables; then their joint probability density is

n A
f<Z17227"'7 H( 27T ) (27T)n/2

i=1
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Because the density depends only on the length of the vector z, we find that
Y = Q7 has the same density for any orthogonal matrix Q).

Scalar multiples of orthogonal matrices are also the only perfectly con-
ditioned matrices. That is, if ko(A) = 1, then A = aQ), where @ is some
orthogonal matrix. To see this, recall that

max,|,=1 || Av]s

ra(A) = | All2| A2 =

minHqu:l ||Au||2 ’

so if ka(A) = 1, the images of all unit vectors under A have the same length
— which means that the lengths of all vectors are scaled by the same amount
by the action of A. Define a = ||Av||/||v|| to be the scaling factor; then
Q = a'A scales the length of every vector by one, which means that Q is
orthogonal.

The singular value decomposition

The fact that orthogonal transforms leave so many metric properties of matri-
ces unchanged suggests the following: find orthogonal transformations that,
when applied to a matrix A, result in a matrix that is as structurally simple
as possible. The result of this is the singular value decomposition (SVD),
which is discussed in 2.5.3-2.5.5 in the third edition of Golub and Van Loan.
That is, we can write

A=UXV"

where U and V' are unitary matrices and X is a diagonal matrix with non-
negative diagonal entries that — according to convention — appear in de-
scending order. If A is rectangular, we will sometimes distinguish the “full
SVD” (in which ¥ is a rectangular matrix with the same dimensions as A)
from the “economy SVD” (in which one of U or V is a rectangular matrix
with orthonormal columns).

There are a few ways to derive the SVD. The most fundamental approach
is via a sequence of optimization problems. Recall that the 2-norm of A is
defined via

o1 = ||All2 = max ||Av]|s.
[[vlla=1
Let v; be a vector at which ||Av|y is maximal, and let u; = Av/| Av|s.

Let [vq, V2] and [u, Us] be orthonormal bases for the row and column spaces,
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Figure 1: Graphical depiction of an SVD of A € R?*2. The matrix A maps
the unit circle (left) to an oval (right); the vectors v; (solid, left) and vy
(dashed, left) are mapped to the major axis oju; (solid, right) and the minor
axis oouy (dashed, right) for the oval.

respectively, and write

Q= [0; j;} —u U] Al Vi

Because we only used length-preserving orthogonal operations, we must have

|Alls = |A|l = o1. But ||Aey || = o7 + ||g]|?, where e; is the first column
of the identity (and is therefore a unit length vector). So g = 0. Applying
a similar argument to A* (recall that ||A*|| = oy, too), we also have f = 0.

Applying the same process recursively to Asg, we can get the rest of the SVD.

Geometry of the SVD

How should we understand the singular value decomposition? We've already
described the basic algebraic picture:

A=UxVT,

where U and V are orthonormal matrices and X is diagonal. But what
does this say about the geometry of A? It says that v; is the vector that is
stretched the most by multiplication by A, and oy is the amount of stretching.
More generally, we can completely characterize A by an orthonormal basis
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of right singular vectors that are each transformed in the same special way:
they get scaled, then rotated or reflected in a way that preserves lengths.
Viewed differently, the matrix A maps vectors on the unit sphere into an
ovoid shape, and the singular values are the lengths of the axes. In Figure [T}
we show this for a particular example, the matrix

0.8 —1.1
A= {0.5 —3.0} '

Conditioning and the distance to singularity
We have already seen that the condition number for matrix multiplication is
k(A) = [AIIIA™]

When the norm in question is the operator two norm, we have that | A|| = oy
and [|[A7Y| = 0,1, so
01
k(A) = —
(=2
That is, k(A) is the ratio between the largest and the smallest amounts by
which a vector can be stretched through multiplication by A.
There is another way to interpret this, too. If A = UXVT is a square
matrix, then the smallest £ (in the two-norm) such that A — E is ezactly

singular is A — o,u,vl. Thus,

-1 _ @
ST =13

is the relative distance to singularity for the matrix A. So a matrix is ill-
conditioned exactly when a relatively small perturbation would make it ex-
actly singular.

Numerical low rank

The rank of a matrix A is given by the number of nonzero singular values.
In computational practice, we would say that a matrix has numerical rank
k if exactly k singular values are “sufficiently” greater than zero. If k <
min(m, n), then we say that the matrix is numerically singular.
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The rank of a matrix is theoretically interesting and useful, but it is also
computationally useful to realize when a matrix is low rank, because that
low rank structure can be used for fast multiplication. Suppose the SVD for
A e R™™ is

A= w5 ol mor

where U, V; € R™* and ¥, € R¥*_ If we don’t use anything about the
structure of A, then we take O(n?) time to compute y = Az. If we write
y = Uy (21(Vi*x)), then it takes O(nk) time to compute y. If k& < n, this may
be a substantial savings! So there is a potential efficiency win in recognizing
when a matrix has low rank, particularly when the matrix can be written as
an outer product from the outset so that we don’t have to compute an SVD
or similar factorization.



