Week 3: Wednesday, Sep 5

Cauchy-Schwarz: a quick reminder

For any inner product,

$$0 \le \|su + v\|^2 = \langle su + v, su + v \rangle = s^2 \|u\|^2 + 2s\langle u, v \rangle + \|v\|^2$$

So we have a quadratic in s with at most one real root. Therefore, the discriminant must be nonpositive, i.e.

$$4\langle u, v \rangle^2 - 4||u||^2||v||^2 \le 0.$$

With a little algebra, we have the Cauchy-Schwarz inequality,

$$|\langle u, v \rangle| < ||u|| ||v||.$$

Furthermore, $|\langle u, v \rangle| = ||u|| ||v||$ iff $||su - v||^2 = 0$ for some s, in which case u and v are parallel.

I hope you will have seen the Cauchy-Schwarz inequality before, but I remind you of it because I will want to use it repeatedly. In particular, I want to use it right now to prove that $||A||_2 = ||A^*||_2$. By definition,

$$||A||_2 = \max_{||v||=1} ||Av||_2.$$

Let v_1 be a unit vector such that $||Av_1||$ is maximal and define $u_1 = Av_1/||Av_1||_2$. Then by Cauchy-Schwarz, together with the definition of the 2-norm, we have

$$||A||_2 = \langle Av_1, u_1 \rangle = \langle v_1, A^*u_1 \rangle \le ||v_1|| ||A^*u_1||_2 = ||A^*u_1||_2 \le ||A^*||_2.$$

Now define $w_1 = A^*u_1/\|A^*u_1\|_2$, and use the same argument to get that

$$||A^*||_2 = \langle A^*u_1, w_1 \rangle = \langle u_1, Aw_1 \rangle \le ||u_1|| ||Aw_1||_2 = ||Aw_1||_2 \le ||A||_2.$$

Therefore, $||A||_2 = ||A_*||_2$, and all the inequalities in the previous two linear are actually equalities. Note that this also means that both v_1 and w_1 are parallel to A^*u_1 , and hence to each other. In fact, both v_1 and w_1 are vectors that form a zero angle with A^*u_1 — which means that $v_1 = w_1$.

Orthogonal matrices

To develop fast, stable methods for matrix computation, it will be crucial that we understand different types of structures that matrices can have. This includes both "basis-free" properties, such as orthogonality, singularity, or self-adjointness; and properties such as the location of zero elements that are really associated with a *matrix* rather than with a linear transform.

Orthogonal matrices will be important throughout our work. The usual definition says that square matrix Q is orthogonal if $Q^*Q = I$, but there are other ways to characterize orthogonality as well. For example, a real square matrix Q is orthogonal iff $||Qv||_2 = ||v||_2$ for all v. Why? Recall that for a real vector space,

$$\langle u + v, u + v \rangle = \langle u, u \rangle + \langle v, v \rangle + 2\langle u, v \rangle.$$

With a little algebra, we have

$$\langle u, v \rangle = \frac{1}{2} (\|u + v\|_2^2 - \|u\|_2^2 - \|v\|_2^2).$$

Therefore, if $||Qv||_2 = ||v||_2$ for every v, we have

$$\langle Qu, Qv \rangle = \frac{1}{2} \left(\|Q(u+v)\|_2^2 - \|Qu\|_2^2 - \|Qv\|_2^2 \right)$$

= $\frac{1}{2} \left(\|u+v\|_2^2 - \|u\|_2^2 - \|v\|_2^2 \right) = \langle u, v \rangle.$

In particular, that means that if e_i denotes the *i*th column of the identity, then $\langle Qe_i, Qe_j \rangle = \langle e_i, e_j \rangle = \delta_{ij}$, or $Q^*Q = I$.

Because a matrix is orthogonal iff it preserves lengths in the two-norm, we have that

$$||QA||_2 = ||A||_2,$$
 $||AQ||_2 = ||A||_2,$ $||QA||_F = ||A||_F,$ $||AQ||_F = ||A||_F.$

There are other important cases of things that remain invariant under orthogonal transformation, too. For example, suppose Z_1, \ldots, Z_n are independent standard normal random variables; then their joint probability density is

$$f(z_1, z_2, \dots, z_n) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}} e^{-z_i^2/2} \right) = \frac{e^{-\|z\|_2^2/2}}{(2\pi)^{n/2}}.$$

Because the density depends only on the length of the vector z, we find that Y = QZ has the same density for any orthogonal matrix Q.

Scalar multiples of orthogonal matrices are also the only perfectly conditioned matrices. That is, if $\kappa_2(A) = 1$, then $A = \alpha Q$, where Q is some orthogonal matrix. To see this, recall that

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\max_{||v||_2 = 1} ||Av||_2}{\min_{||u||_2 = 1} ||Au||_2},$$

so if $\kappa_2(A) = 1$, the images of all unit vectors under A have the same length – which means that the lengths of all vectors are scaled by the same amount by the action of A. Define $\alpha = ||Av||/||v||$ to be the scaling factor; then $Q = \alpha^{-1}A$ scales the length of every vector by one, which means that Q is orthogonal.

The singular value decomposition

The fact that orthogonal transforms leave so many metric properties of matrices unchanged suggests the following: find orthogonal transformations that, when applied to a matrix A, result in a matrix that is as structurally simple as possible. The result of this is the singular value decomposition (SVD), which is discussed in 2.5.3-2.5.5 in the third edition of Golub and Van Loan. That is, we can write

$$A = U\Sigma V^*$$

where U and V are unitary matrices and Σ is a diagonal matrix with non-negative diagonal entries that — according to convention — appear in descending order. If A is rectangular, we will sometimes distinguish the "full SVD" (in which Σ is a rectangular matrix with the same dimensions as A) from the "economy SVD" (in which one of U or V is a rectangular matrix with orthonormal columns).

There are a few ways to derive the SVD. The most fundamental approach is via a sequence of optimization problems. Recall that the 2-norm of A is defined via

$$\sigma_1 \equiv ||A||_2 = \max_{||v||_2 = 1} ||Av||_2.$$

Let v_1 be a vector at which $||Av||_2$ is maximal, and let $u_1 = Av/||Av||_2$. Let $[v_1, V_2]$ and $[u, U_2]$ be orthonormal bases for the row and column spaces,

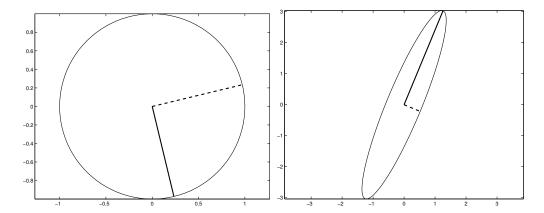


Figure 1: Graphical depiction of an SVD of $A \in \mathbb{R}^{2\times 2}$. The matrix A maps the unit circle (left) to an oval (right); the vectors v_1 (solid, left) and v_2 (dashed, left) are mapped to the major axis $\sigma_1 u_1$ (solid, right) and the minor axis $\sigma_2 u_2$ (dashed, right) for the oval.

respectively, and write

$$\tilde{A} \equiv \begin{bmatrix} \sigma_1 & f^* \\ q & A_{22} \end{bmatrix} = \begin{bmatrix} u_1 & U_2 \end{bmatrix}^* A \begin{bmatrix} v_1 & V_2 \end{bmatrix}$$

Because we only used length-preserving orthogonal operations, we must have $\|\tilde{A}\|_2 = \|A\| = \sigma_1$. But $\|\tilde{A}e_1\|^2 = \sigma_1^2 + \|g\|^2$, where e_1 is the first column of the identity (and is therefore a unit length vector). So g = 0. Applying a similar argument to \tilde{A}^* (recall that $\|\tilde{A}^*\| = \sigma_1$, too), we also have f = 0. Applying the same process recursively to A_{22} , we can get the rest of the SVD.

Geometry of the SVD

How should we understand the singular value decomposition? We've already described the basic algebraic picture:

$$A = U\Sigma V^T,$$

where U and V are orthonormal matrices and Σ is diagonal. But what does this say about the geometry of A? It says that v_1 is the vector that is stretched the most by multiplication by A, and σ_1 is the amount of stretching. More generally, we can *completely* characterize A by an orthonormal basis

of right singular vectors that are each transformed in the same special way: they get scaled, then rotated or reflected in a way that preserves lengths. Viewed differently, the matrix A maps vectors on the unit sphere into an ovoid shape, and the singular values are the lengths of the axes. In Figure 1, we show this for a particular example, the matrix

$$A = \begin{bmatrix} 0.8 & -1.1 \\ 0.5 & -3.0 \end{bmatrix}.$$

Conditioning and the distance to singularity

We have already seen that the condition number for matrix multiplication is

$$\kappa(A) = ||A|| ||A^{-1}||$$

When the norm in question is the operator two norm, we have that $||A|| = \sigma_1$ and $||A^{-1}|| = \sigma_n^{-1}$, so

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}$$

That is, $\kappa(A)$ is the ratio between the largest and the smallest amounts by which a vector can be stretched through multiplication by A.

There is another way to interpret this, too. If $A = U\Sigma V^T$ is a square matrix, then the smallest E (in the two-norm) such that A - E is exactly singular is $A - \sigma_n u_n v_n^T$. Thus,

$$\kappa(A)^{-1} = \frac{\|E\|}{\|A\|}$$

is the relative distance to singularity for the matrix A. So a matrix is ill-conditioned exactly when a relatively small perturbation would make it exactly singular.

Numerical low rank

The rank of a matrix A is given by the number of nonzero singular values. In computational practice, we would say that a matrix has numerical rank k if exactly k singular values are "sufficiently" greater than zero. If $k < \min(m, n)$, then we say that the matrix is numerically singular.

The rank of a matrix is theoretically interesting and useful, but it is also computationally useful to realize when a matrix is low rank, because that low rank structure can be used for fast multiplication. Suppose the SVD for $A \in \mathbb{R}^{n \times n}$ is

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^*$$

where $U_1, V_1 \in \mathbb{R}^{n \times k}$ and $\Sigma_1 \in \mathbb{R}^{k \times k}$. If we don't use anything about the structure of A, then we take $O(n^2)$ time to compute y = Ax. If we write $y = U_1(\Sigma_1(V_1^*x))$, then it takes O(nk) time to compute y. If $k \ll n$, this may be a substantial savings! So there is a potential efficiency win in recognizing when a matrix has low rank, particularly when the matrix can be written as an outer product from the outset so that we don't have to compute an SVD or similar factorization.