
Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 2: Friday, Aug 31

Logistics

1. Monday, Sep 3 is a university holiday. Please don’t come to class – I
won’t be there!

Dot products in floating point

The types of floating point error analysis done in numerical linear algebra
typically follow a common strategy:

1. Write an expression in exact arithmetic. This expression is often in the
form of a recurrence.

2. Write a corresponding expression in the 1 + δ model.

3. Take the difference to get an expression for the error.

4. Find a simplified bound on the error expression.

5. If possible, express that simplified bound in terms of a perturbation to
the input data.

Let us work through this strategy in detail in the case of a dot product
of two real vectors, as computed by the following code:

s = 0;
for i = 1:n

s = s + x(i)∗y(i);
end

Let si denote the partial sum computed at step i in exact arithmetic, ŝi =
fl(si) be the partial sum in floating point, and ei = ŝi − si be the difference.
Using the 1 + δ model of roundoff error, we have the following recurrences

s1 = x1y1; sk+1 = sk + xk+1yk+1

ŝ1 = x1y1(1 + γ1); ŝk+1 = (ŝk + xk+1yk+1(1 + γk+1))(1 + δk)

e1 = x1y1γ1; ek+1 = skδk + (ek + xk+1yk+1γk+1)(1 + δk)

= ek + skδk + xk+1yk+1γk+1 +O(ε2mach)

Bindel, Fall 2012 Matrix Computations (CS 6210)

Running the recurrence for the ek forward, we have

en =
n∑

i=1

xiyi

(
γi +

n∑
j=i+1

δj

)
+O(nε2mach).

Each of the sums of δj is bounded by nεmach, so we can bound the error
expression by

|en| ≤ nεmach

n∑
i=1

|xi||yi|+O(nε2mach).

As is typical in rounding error analysis, we will drop the terms involving
O(ε2mach) and write

|en| . nεmach|x|T |y|

The absolute error bound |en| is a bound on the difference between the
true and computed output, sometimes called a forward error bound. How-
ever, there is also another way to interpret our analysis. Note that the
computed dot product is

fl(xTy) =
n∑

i=1

xiyi(1 + ηi) +O(nε2mach),

where |ηi| ≤ nεmach. If we let x̃i = xi(1 + ηi), we have

fl(xTy) = x̃Ty +O(nε2mach),

That is, we can explain the error in the computed dot product as the same
error we would have gotten had we perturbed the input just slightly. This
perturbation in the input that corresponds to the result is known as a back-
ward error.

We note that a similar analysis to the analysis for dot products gives

fl(Ax) = Ãx,

where the elements of Ã are ãij = aij(1 + ηij) with |ηij| ≤ nεmach. This is
true even under blocked rearrangements of the algorithm (though this error
bound does not necessarily hold for Strassen’s algorithm).

Algorithms whose computed results in floating point correspond to a small
relative backward error, such as the standard dot-product and matrix-vector
multiplication algorithm, are said to be backward stable.

Bindel, Fall 2012 Matrix Computations (CS 6210)

Forward and backward error analysis

The analysis of forward and backward error for dot products and matrix-
vector multiplies is part of a bigger picture. Suppose that we have a space
of problem data P and a space of possible solutions S. We would like to
evaluate some exact function

f : P → S,

but because of errors in intermediate steps of our calculation, we really eval-
uate

f̂ : P → S.

The forward error way of thinking says that we are given some problem p
and the error is the difference f(p)− f̂(p) between the true and the computed
solution. The backward error way of thinking says that the f̂(p) we computed
is the same as f(p̂), an evaluation of the true function for some slightly
erroneous data. The difference p̂− p is the backward error.

If we know something of the sensitivity of f (e.g., if we know a bound
on f ′(p)), then we can estimate the forward error from this backward error.
As a concrete example, consider computing y = Ax, where A ∈ Rn×n and
x ∈ Rn. From the analysis we just did, we know that

fl(y) = (A+ E)x, |E| ≤ nεmach|A|;

that is, the effects of rounding in matrix multiplication can be explained via
a small normwise relative perturbation of ‖E‖/‖A‖ < nεmach. But we also
know from the analysis in Monday’s lecture that therefore

‖ fl(y)− y‖
‖y‖

≤ κ(A)nεmach.

Thus, backward stability implies that the forward normwise relative error
is essentially proportional to the condition number times εmach (times some
modest constant depending on n).

Most of the standard algorithms in numerical linear algebra are backward
stable. If we have backward stability (a property of the algorithm), we are
generally freed from the obligation to work through tedious floating point
error analysis, and can instead concentrate on understanding the condition
number (a property of the problem).

