Bindel, Fall 2012 Matrix Computations (CS 6210)

Week 2: Monday, Aug 27

Matrix norms

In the last lecture, we discussed norms and inner products on vector spaces.
Spaces of linear maps (or matrices) can also be treated as vector spaces, and
the same definition of norms applies. In general, though, we would like to
consider norms on spaces of linear maps that are in some way compatible
with the norms on the spaces they map between.

If A maps between two normed vector spaces V and W, the induced norm
on A is

A
HAHV,W = sup H UHW
o vlly

Because norms are homogeneous with respect to scaling, we also have

[Allvw = sup [[Av[lw.

llvlly=1

Note that when V is finite-dimensional (as it always is in this class), the unit
ball {v € V : ||v|| = 1} is compact, and ||Av|| is a continuous function of v,
so the supremum is actually attained.

These operator norms are indeed norms on the space £(V, W) of bounded
linear maps between V and W (or norms on vector spaces of matrices, if you
prefer). Such norms have a number of nice properties, not the least of which
are the submultiplicative properties

[[Av]| < [|Allf|v]]
IAB| < [IA[l[|B]-

The first property (||Av|| < ||Al|||v||) is clear from the definition of the vector
norm. The second property is almost as easy to prove:

JAB| = max | ABv| < max |lA][ Boll = Al 5|

The matrix norms induced when ) and W are supplied with a 1-norm, 2-
norm, or oo-norm are simply called the matrix 1-norm, 2-norm, and co-norm.
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The matrix 1-norm and oo-norm are given by
Al = mj?lXZ | Al
i

[Alle = max > |4y
J

These norms are nice because they are easy to compute. Also easy to compute
(though it’s not an induced operator norm) is the Frobenius norm

[AllF = Vir(A*A) = >[4,
i

The Frobenius norm is not an operator norm, but it does satisfy the submul-
tiplicative property (i.e. it is consistent with the vector 2-norm).

The 2-norm

The matrix 2-norm is very useful, but it is also not so straightforward to
compute. However, it has an interesting characterization. If A is a real
matrix, then we have

2
415 = (o, 1401

|vfl2=1

= max ||Avl|?
l[ol|3=1

= max v’ AT Av.
vTv=1

This is a constrained optimization problem, to which we will apply the
method of Lagrange multipliers: that is, we seek critical points for the func-
tional

L(v, p) = vT AT Av — p(vTv — 1),
Differentiate in an arbitrary direction (dv,du) to find

2007 (AT Av — ) = 0,
Spu(vfv —1) = 0.
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Therefore, the stationary points satisfy the eigenvalue problem

AT Av = jw.
The eigenvalues of AT A are non-negative (why?), so we will call them o?.
The positive values o; are called the singular values of A, and the largest of
these singular values is ||A|]2. We will return to the idea of singular values,
and the properties we can infer from them, in the not-too-distant future.

Error measures and norms

One reason we care about norms is because they give us a concise way of
talking about the sizes of errors and perturbations. Before giving an example,
let us set the stage with some basic definitions.

First, suppose & and « are scalars, with & ~ «. The absolute errorin & as
an approximation to « is simply |& — «|. In some cases, we will refer to this
simply as “the error” (possibly leaving off the absolute value). Unfortunately,
absolute errors are difficult to interpret out of context. For example, suppose
that I have a measurement with an absolute error of one meter. If this is a
measurement of my height, a meter is a very large error; if it is the distance
from the earth to the sun, the error is tiny. For this reason, we most often
use the dimensionless relative error, |& — a/|c|.

For vectors, we can likewise talk about the normwise absolute error ||z—zx||
or the normwise relative error ||z — z||/||z]|. Less frequently, we will discuss
the componentwise absolute errors x; — x; and the componentwise relative
errors |2; — x;|/|x;|]. Note that the maximum of the componentwise absolute
errors is simply ||Z — ||, and the maximum of the componentwise relative
errors is || diag(z) (% — 7)||so

Introducing the condition number

Now, suppose I want to compute y = Az, but because of a small error
in A (due to measurement errors or roundoff effects), I instead compute
g = (A+ E)x where E is “small.” Of course, the expression for the absolute
error is trivial:

19 —yll = [ Ex]
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But I usually care more about the relative error.

\@—yH:HEﬂL
lyl| lyl]

If we assume that A is invertible and that we are using consistent norms
(which we will usually assume), then

1Ez]| = [EA™ I < [IE[IA™ Iy,

which gives us

19 =yl p g4y 1EN _ o ay IE
< [l AA™ 7 = &)
1yl 1Al Al

That is, the relative error in the output is the relative error in the input
multiplied by the condition number k(A) = ||A||||A7||. This concept of a
condition number as a relation between two relative errors will be a recurring
theme in the class.




