Week 14: Wednesday, Nov 25

A regression puzzle

John Hopcroft asked me the following question a while back. It's a little off our normal track, but given that many people are away for the break, I thought I would share.

Problem 1. Suppose p(x) is a polynomial of degree at most d, and that $\{x_i\}_{i=1}^n$ are sample points in [-1,1]. Let $y_i = p(x_i)$, and suppose that $\hat{y}_i = y_i + e_i$ where the errors e_i are i.i.d. $N(0, \delta^2)$. Let $\hat{p}(x)$ be the polynomial of degree at most d that minimizes $\sum_{i=1}^n (\hat{p}(x_i) - \hat{y}_i)^2$. If X is drawn uniformly from [-1,1], what is $E[(p(X) - \hat{p}(X))^2]$?

The beauty of this problem is that, while the statement is simple, the analysis¹ brings together many of the ideas we have discussed in class:

- Orthogonal polynomials.
- Least squares problems and problems of orthonormal bases.
- Singular values.
- The Cauchy interlace theorem.

Let us begin at the beginning, with the connection to orthogonal polynomials.

Orthogonal polynomials

The expected squared error $E[(p(X) - \hat{p}(X))^2]$ depends on the independent random variables e_i and X. If X is uniform on [-1, 1], we have

$$E_X[(p(X) - \hat{p}(X))^2] = \frac{1}{2} \int 1^1 (p(X) - \hat{p}(X))^2 dX = \frac{1}{2} ||p - \hat{p}||_{L^2([-1,1])}^2,$$

where $L^2([-1,1])$ is the space of square-integrable functions on [-1,1], with an inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

¹ It seems likely that all this is well understood by experts in regression, possibly with a simpler notation. But numerical linear algebra is the language I know, so humor me.

Multiplication by x defines a linear operation on $L^2([-1,1])$; furthermore, this linear operation is self-adjoint, i.e.

$$\langle f, xg \rangle = \int_{-1}^{1} x f(x) g(x) dx = \langle xf, g \rangle.$$

Though $L^2([-1,1])$ is not a finite dimensional space, we can still apply the Lanczos algorithm to generate an orthonormal set of polynomials $\{q_0, q_1, \ldots\}$. That is, starting from $q_0 = 1/\sqrt{2}$ we each successive degree k+1 polynomial q_{k+1} by orthogonalizing xq_k against q_0, q_1, \ldots, q_k . Because of self-adjointness, we only need to orthogonalize xq_k against q_k and q_{k-1} , since for j < k-1 we have

$$\langle xq_k, q_j \rangle = \langle q_k, xq_j \rangle = \left\langle q_k, \sum_{i=0}^{j+1} a_i q_i \right\rangle = 0,$$

because xq_j is a degree j+1 polynomial and the set $\{q_0, \ldots, q_{j+1}\}$ forms a basis for the degree j+1 polynomials. As with the finite-dimensional procedure, we now have

$$xq_j = \beta_{j-1}q_j + \alpha_j q_j + \beta_j q_{j+1},$$

which we can rewrite as

(1)
$$\beta_{j-1}q_j + (\alpha_j - x)q_j + \beta_j q_{j+1} = 0,$$

where

$$\alpha_j = \langle q_j, xq_j \rangle,$$

$$\beta_j = ||q_{j+1}||.$$

Now, notice that $q_0 = 1/2$ is an even function $(q_0(x) = q_0(-x))$; Therefore, xq_0 is an odd function, and is thus automatically orthogonal to q_0 , so the Lanczos algorithm does not need to subtract off a multiple of q_0 . This means that q_1 ends up being odd, and so xq_1 is even; and thus xq_1 is orthogonal to q_1 . Continuing in this way, we have that q_k is odd whenever k is odd, and even whenever k is even, so that $\alpha_k = \langle q_k, xq_k \rangle = 0$ for any k. Therefore, the polynomials q_k are actually generated by a recurrence of the form

(2)
$$\beta_{j-1}q_j - xq_j + \beta_j q_{j+1} = 0.$$

Legendre polynomials

The Legendre polynomials appeared in Homework 4; they are defined by the three-term recurrence

$$kp_k(x) - (2k-1)x p_{k-1}(x) + (k-1)p_{k-2}(x) = 0$$

with

$$p_0(x) = 1$$
$$p_1(x) = x.$$

As we might expect from the similarity to (2) the Legendre polynomials form an orthogonal (though not orthonormal) set in $L^2([-1,1])$, i.e.

$$\langle p_j, p_k \rangle = \int_{-1}^1 p_j(x) p_k(x) dx = \begin{cases} \frac{2}{2k+1}, & j=k\\ 0, & \text{otherwise.} \end{cases}$$

Thus, the orthonormal set generated in the previous section by the Lanczos recurrence is

$$q_k(x) = \sqrt{\frac{2k+1}{2}} p_k(x).$$

In particular, $q_0(x), \ldots, q_d(x)$ is an orthonormal basis for the space of polynomials of degree at most d. This means we can write

$$p(x) = \sum_{j} q_{j}(x)c_{j}$$
$$\hat{p}(x) = \sum_{j} q_{j}(x)\hat{c}_{j},$$

or, in matrix notation, p(x) = Q(x)c and $\hat{p}(x) = Q(x)\hat{c}$ where $Q(x) = [q_0(x) \dots q_1(x)]$. Now, note that because the columns of Q are orthonormal in the inner product associated with $L^2([-1,1])$, we can write

$$||p - \hat{p}||_2 = ||Q(c - \hat{c})||_2 = ||c - \hat{c}||_2.$$

This is useful because

$$E[(p(X) - \hat{p}(X)_2^2] = \frac{1}{2}E\left[\int_{-1}^1 (p(x) - \hat{p}(x))^2 dx\right]$$
$$= \frac{1}{2}E[\|p - \hat{p}\|_2^2] = \frac{1}{2}E[\|c - \hat{c}\|_2^2].$$

Therefore, we really want to find the l^2 norm of $z = c - \hat{c}$.

Enter SVD

Let us write $\hat{p}(x) = Q(x)\hat{c}$. The polynomial \hat{p} is chosen to minimize the squared error

$$\sum_{i} (\hat{p}(x_i) - \hat{y}_i)^2 = \sum_{i} (Q(x_i)\hat{c} - \hat{y}_i)^2 = ||A\hat{c} - \hat{y}||_2^2,$$

where $A \in \mathbb{R}^{n \times d+1}$ has entries $A_{ij} = q_j(x_i)$ (think of the column indices as beginning at zero). We also know that Ac = y, where p(x) = Q(x)c is the polynomial we wish to reconstruct. Therefore,

$$||A\hat{c} - \hat{y}||_2 = ||A(c - \hat{c}) - (y - \hat{y})||_2 = ||Az - e||_2$$

is minimized over all z.

Taking the SVD $A=U\Sigma V^T$ (U rectangular) and using unitary invariance of the l^2 norm, we have

$$||U\Sigma V^T z - e||_2 = ||\Sigma \hat{z} - \hat{e}||,$$

where $\hat{z} = V^T z$ and $\hat{e} = U^T e$. The minimizing \hat{z} is clearly $\hat{z} = \Sigma^{-1} \hat{e}$. Again using invariance of l^2 norms under unitary transformations, we have $||z||_2 = ||\hat{z}||$; and using the fact that the joint distribution of i.i.d. Gaussian random variables is also invariant under unitary transformations, we have that $\hat{e} \in \mathbb{R}^d$ again has i.i.d. Gaussian components with mean zero and variance δ^2 . Thus,

$$E[(p(X) - \hat{p}(X))^2] = \frac{1}{2}E[\|\Sigma^{-1}\hat{e}\|^2] = \sum_{j=1}^d \frac{\delta^2}{2\sigma_j^2} = \frac{\delta^2}{2}\|A^{\dagger}\|_F^2.$$

where $A^{\dagger} = V \Sigma^{-1} U = (A^T A)^{-1} A^T$ is the Moore-Penrose pseudoinverse of A.

An instability illustrated

In the case where n = d+1 the matrix A becomes square, $||A^{\dagger}||_F^2 = ||A^{-1}||_F^2$, and our problem reduces from least squares to polynomial fitting. It is well-known that fitting polynomials through equally spaced points is unstable; let us put this in concrete terms. The following MATLAB function returns the matrix A defined in the previous section:

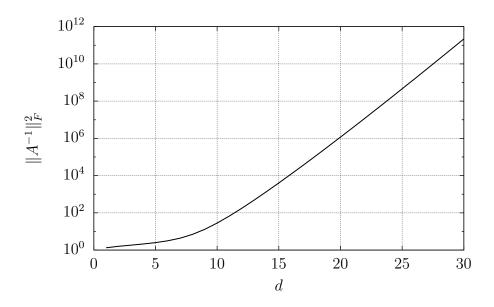


Figure 1: Growth of $||A^{-1}||_F^2$ for polynomial interpolation of degree d.

```
% A = lec36stab(x, d)
%
% Evaluate A(i,j) = q_{j-1}(x_i) for j = 1:d+1, where q_{j-1}
% is the normalized Legendre polynomial of degree j-1.

function A = lec36stab(x, d)

n = length(x);
A = zeros(n, d+1);
pkm2 = 1; A(:,1) = sqrt(0.5);
pkm1 = x; A(:,2) = sqrt(1.5)*x;
for k = 2:d
    pk = ((2*k-1)*(x.*pkm1) - (k-1)*pkm2)/k;
    A(:,k+1) = sqrt(k+0.5)*pk;
    pkm2 = pkm1;
    pkm1 = pk;
end
```

In Figure 1, we show $||A^{-1}||_F^2$ for $1 \le d \le 30$ on a semilogarithmic scale. The exponential growth in error amplification is clear.

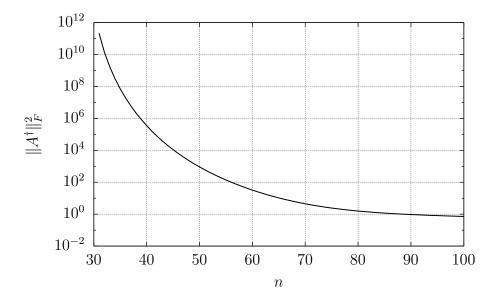


Figure 2: Decay of $||A^{\dagger}||_F^2$ for fitting degree-30 polynomials through n points.

The quadrature connection

While interpolation through d+1 points is risky business, fitting a degree d polynomial through $n \gg d$ equally spaced points is much safer. Let us again look at the behavior of $\|A^{\dagger}\|_F^2$, but this time fixing the polynomial degree at d=30 and letting n vary (Figure 2). As the number of data points increases, A^{\dagger} becomes increasingly well behaved. One way to see why this should be is to interpret the singular values in terms of numerical quadrature. Suppose $n \gg d$; then the trapezoidal rule for integration gives

$$\int_{-1}^{1} q_j(x)q_k(x) dx \approx \frac{1}{n}q_j(x_1)q_k(x_1) + \frac{2}{n} \sum_{i=2}^{n-1} q_j(x_i)q_k(x_i) + \frac{1}{n}q_j(x_1)q_k(x_1)$$
$$= \frac{1}{n} (A^T D A)_{jk},$$

where $D = (1, 2, 2, \dots, 2, 2, 1)$. Orthonormality of the q_j gives us

$$A^T DA \approx nI$$

which means that the singular values of $\sqrt{D}A$ are all close to \sqrt{n} , and

$$\frac{1}{\sqrt{2}} \|\sqrt{D}Ax\|_2 \le \|Ax\|_2 \le \|\sqrt{D}Ax\|_2$$

so the singular values of A must lie approximately between $\sqrt{n/2}$ and \sqrt{n} (and, as one might suspect, most of them will be close to $\sqrt{n/2}$). Therefore, we expect $||A^{\dagger}||_F^2$ to behave like 2d/n as n/d becomes sufficiently large; and this is indeed what happens.

For small values of n/d, the analysis above fails because the trapezoidal rule has a large error for the (generally highly oscillatory) polynomials $q_j(x)q_k(x)$ when j+k is not much smaller than n. However, we can do an analogous analysis if we choose the nodes to be roots of the degree n Gauss-Legendre polynomial. In this case, we have an exact relation

$$A^T \hat{D} A = I$$

even when n = d + 1. As before, this fact allows us to bound the singular values of \hat{D}

Extensions to the analysis

The following extensions to the analysis described above are fairly easy:

- 1. The errors e could come from a multivariate normal distribution with known covariance. This leads to \hat{e} distributed according to another multivariate normal distribution with known covariance.
- 2. We could choose a different distribution for the randomly chosen point X. This would lead us to choosing a different inner product

$$\langle f, g \rangle_{\mu} = \int f(x)g(x)\mu(x) dx,$$

where $\mu(x)$ is the probability density for X. We could nonetheless construct orthogonal polynomials via Lanczos as before.

3. We could consider a weighted least square procedure to compute \hat{c} , corresponding to choosing a different inner product in the space of coefficients.