
Bindel, Fall 2009 Matrix Computations (CS 6210)

Week 5: Wednesday, Sep 23

Sherman-Morrison-Woodbury

The Sherman-Morrison formula describes the solution of A+uvT when there
is already a factorization for A. An easy way to derive the formula is through
block Gaussian elimination. In order to compute the product (A+uvT)x, we
would usually first compute ξ = vTx and then compute (A+uvT)x = Ax+uξ.
So we can write (A+ uvT)x = b in terms of an extended linear system[

A u
vT −1

] [
x
ξ

]
=

[
b
0

]
.

We can factor the matrix in this extended system as[
A u
vT −1

]
=

[
I 0

vTA−1 1

] [
A u
0 −1− vTA−1u

]
,

apply forward substitution with the block lower triangular factor,

y = b,

η = −vTA−1y,

and apply backward substitution with the block upper triangular factor,

ξ = (−1− vTA−1u)−1η

x = A−1(y − uξ).

If we put all the algebra together, we find

x =

[
A−1 − A−1uvTA−1

1 + vTA−1u

]
b,

or

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

This last formula is usually called the Sherman-Morrison formula. The
Sherman-Morrison-Woodbury formula is the generalization to a rank k mod-
ification to A:

(A+ UV T)−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1.

Bindel, Fall 2009 Matrix Computations (CS 6210)

Backward error in Gaussian elimination

In lecture, I cut straight to the point: solving Ax = b in finite precision using
Gaussian elimination followed by forward and backward substitution yields
a computed solution x̂ exactly satisfies

(1) (A+ δA)x̂ = b,

where |δA| . 3nεmach|L̂||Û |, assuming L̂ and Û are the computed L and U
factors.

Though I didn’t do this in class, here I will briefly sketch a part of the
error analysis following Demmel’s treatment (§2.4.2). Mostly, this is because
I find the treatment in §3.3.1 of our book less clear than I would like – but
also, the bound in Demmel’s book is marginally tighter. Here is the idea.
Suppose L̂ and Û are the computed L and U factors. We obtain ûjk by
repeatedly subtracting ljiuik from the original ajk, i.e.

ûjk = fl

(
ajk −

j−1∑
i=1

l̂jiûik

)
.

Regardless of the order of the sum, we get an error that looks like

ûjk = ajk(1 + δ0)−
j−1∑
i=1

l̂jiûik(1 + δi) +O(ε2mach)

where |δi| ≤ (j − 1)εmach. Turning this around gives

ajk =
1

1 + δ0

(
l̂jjûjk +

j−1∑
i=1

l̂jiûik(1 + δi)

)
+O(ε2mach)

= l̂jjûjk(1− δ0) +

j−1∑
i=1

l̂jiûik(1 + δi − δ0) +O(ε2mach)

=
(
L̂Û
)

jk
+ Ejk,

where

Ejk = −l̂jjûjkδ0 +

j−1∑
i=1

l̂jiûik(δi − δ0) +O(ε2mach)

Bindel, Fall 2009 Matrix Computations (CS 6210)

is bounded in magnitude by (j − 1)εmach(|L||U |)jk + O(ε2mach)1. A similar

argument for the components of L̂ yields

A = L̂Û + E, where |E| ≤ nεmach|L̂||Û |+O(ε2mach).

In addition to the backward error due to the computation of the LU
factors, there is also backward error in the forward and backward substitution
phases, which gives the overall bound (1).

Pivoting

The backward error analysis in the previous section is not completely satis-
factory, since |L||U | may be much larger than |A|, yielding a large backward
error overall. For example, consider the matrix

A =

[
δ 1
1 1

]
=

[
1 0
δ−1 1

] [
δ 1
0 1− δ−1

]
.

If 0 < δ � 1 then ‖L‖∞‖U‖∞ ≈ δ−2, even though ‖A‖∞ ≈ 2. The problem
is that we ended up subtracting a huge multiple of the first row from the
second row because δ is close to zero — that is, the leading principle minor
is nearly singular. If δ were exactly zero, then the factorization would fall
apart even in exact arithmetic. The solution to the woes of singular and near
singular minors is pivoting; instead of solving a system with A, we re-order
the equations to get

Â =

[
1 1
δ 1

]
=

[
1 0
δ 1

] [
1 1
0 1− δ

]
.

Now the triangular factors for the re-ordered system matrix Â have very
modest norms, and so we are happy. If we think of the re-ordering as the
effect of a permutation matrix P , we can write

A =

[
δ 1
1 1

]
=

[
0 1
1 0

] [
1 0
δ 1

] [
1 1
0 1− δ

]
= P TLU.

1 It’s obvious that Ejk is bounded in magnitude by 2(j− 1)εmach(|L||U |)jk +O(ε2mach).
We cut a factor of two if we go down to the level of looking at the individual rounding
errors during the dot product, because some of those errors cancel.

Bindel, Fall 2009 Matrix Computations (CS 6210)

Note that this is equivalent to writing PA = LU where P is another permu-
tation (which undoes the action of P T).

If we wish to control the multipliers, it’s natural to choose the permutation
P so that each of the multipliers is at most one. This standard choice leads
to the following algorithm:

for j = 1:n-1

% Find ipiv >= j to maximize |A(i,j)|

[absAij, ipiv] = max(abs(A(j:n,j)));

ipiv = ipiv + j-1;

% Swap row ipiv and row j

Aj = A(j,j:n);

A(j,j:n) = A(ipiv,j:n);

A(ipiv,j:n) = Aj;

% Record the pivot row

piv(j) = ipiv;

% Update trailing submatrix

A(j+1:n,j+1:n) = A(j+1:n,j+1:n) - A(j+1:n,j)*A(j,j+1:n);

end

By design, this algorithm produces an L factor in which all the elements
are bounded by one. But what about the U factor? There exist pathological
matrices for which the elements of U grow exponentially with n. But these
examples are extremely uncommon in practice, and so, in general, Gaussian
elimination with partial pivoting does indeed have a small backward error.
Of course, the pivot growth is something that we can monitor, so in the
unlikely event that it does look like things are blowing up, we can tell there
is a problem and try something different.

When problems do occur, it is more frequently the result of ill-conditioning
in the problem than of pivot growth during the factorization.

Bindel, Fall 2009 Matrix Computations (CS 6210)

Iterative refinement revisited

Recall from last lecture that if we have a solver for Â = A+E with E small,
then we can use iterative refinement to “clean up” the solution. The matrix
Â could come from finite precision Gaussian elimination of A, for example,
or from some factorization of a nearby “easier” matrix. To get the refinement
iteration, we take the equation

(2) Ax = Âx− Ex = b,

and think of x as the fixed point for an iteration

(3) Âxk+1 − Exk = b.

Note that this is the same as

Âxk+1 − (Â− A)xk = b,

or
xk+1 = xk + Â−1(b− Axk).

Note that this latter form is the same as inexact Newton iteration on the
equation Axk − b = 0 with the approximate Jacobian Â.

If we subtract (2) from (3), we see

Â(xk+1 − x)− E(xk − x) = 0,

or
xk+1 − x = Â−1E(xk − x).

Taking norms, we have

‖xk+1 − x‖ ≤ ‖Â−1E‖‖xk − x‖.

Thus, if ‖Â−1E‖ < 1, we are guaranteed that xk → x as k → ∞. At least,
this is what happens in exact arithmetic. In practice, the residual is usually
computed with only finite precision, and so we might expect to stop making
progress at some point. This is the topic of the first problem in HW 2.

