More Fun With Sparse Matrices

David Bindel

05 Nov 2015

Logistics and life lessons?

» Some progress on amplxe + MPI — watch Piazza
» Should be working on shortest paths now

» Final projects: be careful with scope!

» A good small kernel trumps vast ambition without execution
» Check against a slow, naive, obvious calculation.

Reminder: Conjugate Gradients

What if we only know how to multiply by A?
About all you can do is keep multiplying!

K«(A, b) = span {b, Ab, A%b, ... ,Ak—1b} .
Gives surprisingly useful information!
If Ais symmetric and positive definite, x = A~'b minimizes

P(x) = %XTAX —xTb

Vo(x) = Ax — b.

Idea: Minimize ¢(x) over Kk (A, b).
Basis for the method of conjugate gradients

Convergence of CG

v

KSPs are not stationary (no constant fixed-point iteration)

Convergence is surprisingly subtle!
CG convergence upper bound via condition number
» Large condition number iff form ¢(x) has long narrow bowl
» Usually happens for Poisson and related problems
Preconditioned problem M~1Ax = M~'b converges faster?
Whence M?

» From a stationary method?
» From a simpler/coarser discretization?
» From approximate factorization?

v

v

v

v

PCG

Compute r(® = p — Ax
fori=1,2,...
solve Mz(i=1) = ((i=1)
piy = (ri=1)Tz0=1)

if i == Parallel work:
p =z > Solve with M
else » Product with A

Bi—t = pi-1/pi-2
p) = Z0=1) 4 g; 4 pli=1)
endif > AXpys
q) = Ap() Overlap comm/comp.
a; = pi—1/(p")7q)
x() = x(=1) 4 o;p(0)
P = (li=1) _ g0
end

\4

Dot products

PCG bottlenecks

Key: fast solve with M, product with A
» Some preconditioners parallelize better!
(Jacobi vs Gauss-Seidel)
» Balance speed with performance.

» Speed for set up of M?
» Speed to apply M after setup?
» Cheaper to do two multiplies/solves at once...
» Can't exploit in obvious way — lose stability
» Variants allow multiple products — Hoemmen'’s thesis

» Lots of fiddling possible with M; what about matvec with A?

Thinking on (basic) CG convergence
0 g/d

O
O

O O O

O O OO0
OO O0OO0O0
OO O0OO0O0O0
OO O0OO0O0O0

Consider 2D Poisson with 5-point stencil on an n x n mesh.
» Information moves one grid cell per matvec.
» Cost per matvec is O(n?).
» At least O(n®) work to get information across mesh!

CG convergence: a counting approach

v

Time to converge > time to propagate info across mesh
For a 2D mesh: O(n) matvecs, O(n®) = O(N®/2) cost
For a 3D mesh: O(n) matvecs, O(n*) = O(N*/3) cost
“Long” meshes yield slow convergence

3D beats 2D because everything is closer!

» Advice: sparse direct for 2D, CG for 3D.
» Better advice: use a preconditioner!

v

v

v

v

CG convergence: an eigenvalue approach

Define the condition number for k(L) s.p.d:

.)\max(L)
H(L) B)\min(L)

Describes how elongated the level surfaces of ¢ are.

» For Poisson, x(L) = O(h~2)
» CG steps to reduce error by 1/2 = O(\/r) = O(h™).

Similar back-of-the-envelope estimates for some other PDEs.
But these are not always that useful... can be pessimistic if
there are only a few extreme eigenvalues.

CG convergence: a frequency-domain approach

EENEHI
[T

FFT of gy FFT of eqq

Error ey after k steps of CG gets smoother!

Choosing preconditioners for 2D Poisson

v

CG already handles high-frequency error

Want something to deal with lower frequency!
Jacobi useless

» Doesn’t even change Krylov subspace!
Better idea: block Jacobi?

» Q: How should things split up?
» A: Minimize blocks across domain.
» Compatible with minimizing communication!

v

v

v

Restrictive Additive Schwartz (RAS)

Restrictive Additive Schwartz (RAS)

v

Get ghost cell data

Solve everything local (including neighbor data)
Update local values for next step

Default strategy in PETSc

v

v

v

Multilevel Ideas

» RAS propogates information by one processor per step

» For scalability, still need to get around this!
» Basic idea: use multiple grids
» Fine grid gives lots of work, kills high-freq error
» Coarse grid cheaply gets info across mesh, kills low freq

More on this another time.

CG performance

Two ways to get better performance from CG:
1. Better preconditioner

» Improves asymptotic complexity?
» ... but application dependent
2. Tuned implementation
» Improves constant in big-O
» ... but application independent?

Benchmark idea (?): no preconditioner, just tune.

Tuning PCG

Compute r(® = p — Ax
fori=1,2,...
solve Mz(i=1) = p(i=1)
piy = (r=D)T =)

if i ==1
p(1) = z(0
else » Most work in A, M
,6’,‘,1 = pi-1 /pi_2 ' » Vector ops synchronize
p) = 20D 4 6;_1p0=D . Overlap comm, comp?
endif
q) = Ap()

aj = pi_1/(PN)Tql)

X = x(=1) 4 g p(0)

P = Pi=1) ;g0
end

Tuning PCG

Compute r(® = p — Ax
p-1=0;8_1=0,0_1=0

s=L"10)
po=5's Split z= M~"rinto s, w;
fori=0,1,2,... Overlap
wi=LTs » p] g; with x update
Pi = W + Bi—1Pi—1 » sTswith w; eval
a=p > Computing p;, Gi, 3
Y =P qi o
Xi = Xi_1 + Qi1Pj1 » Pipeline ri 1, s?
ai = pi/7i > Pipeline p;, w;?
ity =1 —aq;
s=L""ryy Parallel Numerical LA,
Pit1 = sTs Demmel, Heath, van der Vorst
Check convergence (||ri1]|)
Bi = pix1/pi

end

Tuning PCG

Can also tune
» Preconditioner solve (hooray!)
» Matrix multiply

» Represented implicitly (regular grids)
» Or explicitly (e.g. compressed sparse column)

Or further rearrange algorithm (Hoemmen, Demmel).

Tuning sparse matvec

» Sparse matrix blocking and reordering (Im, Vuduc, Yelick)

» Packages: Sparsity (Im), OSKI (Vuduc)
» Available as PETSc extension

» Optimizing stencil operations (Datta)

Reminder: Compressed sparse row storage

! ety EEEE
2
3 Col |1 41(2 5(3 64|51 6|
4
5 Pr [1.3 57 8 9 1
6
for i = 1:n

Y[l] = OI

for jj = ptr[i] to ptr[i+l]-1

y[i] += A[JJl*x[col[]]];

end

end

Problem: y[i] += A[3j]*x[col[j]];

Memory traffic in CSR multiply

Memory access patterns:
» Elements of y accessed sequentially
» Elements of A accessed sequentially
» Access to x are all over!

Can help by switching to block CSR.
Switching to single precision, short indices can help memory
traffic, too!

Parallelizing matvec

» Each processor gets a piece

» Many partitioning strategies
» |dea: re-order so one of these strategies is “good”

Reordering for matvec

SpMV performance goals:
Balance load?
Balance storage?
Minimize communication?
» Good cache re-use?
Also reorder for
» Stability of Gauss elimination,
» Fill reduction in Gaussian elimination,
» Improved performance of preconditioners...

v

v

v

Reminder: Sparsity and partitioning

% |
R [102%30405]
A= *E_* *
e ox

Want to partition sparse graphs so that

» Subgraphs are same size (load balance)

» Cut size is minimal (minimize communication)
Matrices that are “almost” diagonal are good?

Reordering for bandedness

10
0 10 20 30 40 5 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
nz = 460 460

Natural order RCM reordermg

Reverse Cuthill-McKee
» Select “peripheral” vertex v
» Order according to breadth first search from v
» Reverse ordering

From iterative to direct

» RCM ordering is great for SpMV
» But isn’t narrow banding good for solvers, too?

» LU takes O(nb?) where b is bandwidth.
» Great if there’s an ordering where b is small!

Skylines and profiles

v

Profile solvers generalize band solvers
Use skyline storage; if storing lower triangle, for each row i:

v

» Start and end of storage for nonzeros in row.
» Contiguous nonzero list up to main diagonal.

In each column, first nonzero defines a profile.
All fill-in confined to profile.
RCM is again a good ordering.

v

v

v

Beyond bandedness

» Bandedness only takes us so far
» Minimum bandwidth for 2D model problem? 3D?
» Skyline only gets us so much farther
» But more general solvers have similar structure
» Ordering (minimize fill)
Symbolic factorization (where will fill be?)
Numerical factorization (pivoting?)
... and triangular solves

vV vVvYyy

Reminder: Matrices to graphs

» Aj # 0 means there is an edge between i/ and j
» Ignore self-loops and weights for the moment
» Symmetric matrices correspond to undirected graphs

Troublesome Trees

® OO OO ® OO OO
O @ C@00O0
o O 0000
O @) 0C000O0
O o O00O0Oe

A4

One step of Gaussian elimination completely fills this matrix!

Terrific Trees

|
o
@)

OOO|

o O

OO0 00 e

AN

OOO|

O
ONO)

ONORORON

AN

Full Gaussian elimination generates no fill in this matrix!

Graphic Elimination

O O 00O O ORIV
00 O 00
0000 O00000
00 O 00 O
00 O O Jj0O 000
O O O O O 0000
O 00 O O
) 000 o O 000
O 0O 0
7979 %N
790 N

Eliminate a variable, connect all neighbors.

Graphic Elimination

Consider first steps of GE

A(2:end, 1) = A(2:end,1)/A(1,1);
A(2:end, 2:end) A(2:end,2:end)—-...
A(2:end,1)*A(1l,2:end);

Nonzero in the outer product at (i,j) ifA(i,1) andA (3, 1)
both nonzero — that is, if i and j are both connected to 1.

General: Eliminate variable, connect remaining neighbors.

Terrific Trees Redux

O

Order leaves to root —

o
@)

OOO|

o O
OO0 e

AN

L O
o O
O O
o O
ORORONON |

N

on eliminating /, parent of / is only remaining neighbor.

Nested Dissection

Ak Y
-

SN

N\
~7

Idea: Think of block tree structures.
Eliminate block trees from bottom up.
Can recursively partition at leaves.

Rough cost estimate: how much just to factor dense Schur
complements associated with separators?
Notice graph partitioning appears again!

» And again we want small separators!

v

v

v

v

v

Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)

» ND gives optimal complexity in exact arithmetic
(George 73, Hoffman/Martin/Rose)

» 2D: O(Nlog N) memory, O(N®/2) flops
» 3D: O(N*/3) memory, O(N?) flops

Minimum Degree

» Locally greedy strategy
» Want to minimize upper bound on fill-in
» Fill < (degree in remaining graph)?

» At each step

» Eliminate vertex with smallest degree
» Update degrees of neighbors

» Problem: Expensive to implement!

» But better varients via quotient graphs
» Variants often used in practice

Elimination Tree

» Variables (columns) are nodes in trees
» jadescendant of k if eliminating j updates k
» Can eliminate disjoint subtrees in parallel!

Cache locality

Basic idea: exploit “supernodal” (dense) structures in factor

» e.g. arising from elimination of separator Schur
complements in ND

» Other alternatives exist (multifrontal solvers)

Pivoting

Pivoting is a tremendous pain, particularly in distributed
memory!

» Cholesky — no need to pivot!
» Threshold pivoting — pivot when things look dangerous
» Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals

Direct to iterative

Can improve solution by iterative refinement.

PAQ ~ LU
Xo~ QU 'L~'Pb
n = b— AXO

Xy &~ Xg + QUL Pry

Looks like approximate Newton on F(x) = Ax — b= 0.
This is just a stationary iterative method!
Nonstationary methods work, too.

Variations on a theme

If we’re willing to sacrifice some on factorization,
» Single precision + refinement on double precision residual?
» Sloppy factorizations (marginal stability) + refinement?

» Modify m small pivots as they’re encountered (low rank
updates), fix with m steps of a Krylov solver?

